• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 76
  • 51
  • 32
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 573
  • 72
  • 66
  • 61
  • 55
  • 52
  • 47
  • 44
  • 44
  • 43
  • 42
  • 41
  • 40
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A Study of the Kinetics of a Reaction between VO(HEDTA)-1 and Hydrogen Peroxide

Campbell, Elaina B 01 May 2015 (has links)
Vanadium is commonly used as an agent to make tools rust-resistant. As a transition metal, it can be used as a catalyst due to its ability to change oxidation states. VO(HEDTA)-1, a complex of the vanadyl ion, VO2+ and HEDTA (N-(2-Hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid) was readily formed. This complex containing vanadium in the +4 oxidation state was reacted with hydrogen peroxide to form a vanadate complex. This vanadate complex was formed as a first step in simulating the vanadate(V)-dependent haloperoxidases in marine algae, a yet uncharacterized reaction. Electron absorption spectroscopy (UV-Vis) was used to observe the oxidation of V(IV) in the complex to V(V) through the color change of the complex from blue to yellow. This color change was observed through the formation of a peak at 450nm. By changing the initial concentrations of VO(HEDTA)-1, hydrogen peroxide, and hydronium ion, the change in absorbance at 450nm during the first minutes of the reaction was correlated with time to determine the initial rates for each reactant. Using this method, a rate equation for the reaction was determined. The rate of reaction was determined to be first order with respected to VO(HEDTA)-1 and H2O2, and 1/2 order with respect to H+. This half-order indicates that the hydronium ion is engaged in a reversible reaction. The involvement of hydroxyl radicals produced by the reaction, as shown by the effect of free radical scavengers to inhibit the reaction was also studied.
162

The Structure and Stability of Cationic Metal-Benzene Clusters

Rabayda, Daniel P 01 January 2019 (has links)
We have investigated the size-dependent stability and structure of benzene, aluminum-benzene, and vanadium-benzene clusters. Motivated by gas-phase experimental studies performed by an experimental collaborator, we have used first-principle electronic structure methods to identify the structure of Al+(Bz)n, V+(Bz)n, and Bzn clusters. Our studies reveal that cationic aluminum-benzene clusters have a magic number of 13, and that its high stability may be understood by analyzing the structure of the cluster. We also investigate the structure of vanadium-benzene clusters which have a magic number of 2. Here I examine the benzene-cation and benzene-benzene interactions that lead to these magic numbers, as well as their geometric shell structures and their formation/solvation.
163

A Comparative Study of the Structural Features and Kinetic Properties of the MoFe and VFe Proteins from Azotobacter Vinelandii

Pabon Sanclemente, Miguel Alejandro 01 May 2009 (has links)
Biological nitrogen fixation is accomplished in the bacterium Azotobacter vinelandii by means of three metalloenzymes: The molybdenum, vanadium, and iron-only nitrogenase. The knowledge regarding biological nitrogen fixation has come from studies on the Mo-dependent reaction. However, the V- and Fe-only-dependent reduction of nitrogen remains largely unknown. By using homology modeling techniques, the protein folds that contain the metal cluster active sites for the V- and Fe-only nitrogenases were constructed. The models uncovered similarities and differences existing among the nitrogenases regarding the identity of the amino acid residues lining pivotal structural features for the correct functioning of the proteins. These differences, could account for the differences in catalytic properties depicted by these enzymes. The quaternary structure of the dinitrogenases also differs. Such component in the Mo-nitrogenase is an α2β2 tetramer while for the V- an Fe-only nitrogenase is an α2β2δ2 hexamer. The latter enzymes are unable to reduce N2 in the absence of a functional δ subunit, yet they reduce H+ and the non-physiological substrate C2H2. Therefore, the δ subunit is essential for V- and Fe-only dependent nitrogen fixation by a mechanism that still remains unknown. In attempt to understand why the δ subunit is essential for V-dependent N2 reduction from a structural stand point, this work presents the strategy followed to clone the vnfG gene and purify its expression product, the δ subunit. The purified protein was subjected to crystallization trials and used to stabilize a histidine-tagged VFe protein that would otherwise purify with low Fe2+ content and poor H+ and C2H2 reduction activities. The VFe preparation was used to conduct substrate reduction assays to assess: i) The electron allocation patterns to each of the reduction products of the substrates C2H2, N2, N2H4, and N3−; and ii) Inhibition patterns among substrate and inhibitor of the nitrogenase reaction. This work also reports on the effect N2H4 and N3− has on the electron flux to the products of the C2H2 reduction. The work presented herein provides information with which to compare and contrast biological nitrogen fixation as catalyzed by the Mo- and V-nitrogenases from Azotobacter vinelandii.
164

Regulation and chemotherapeutic targeting of human Cdc25A phosphatase

Scrivens, Paul James. January 2007 (has links)
No description available.
165

Les bronzes de vanadium-lithium

Galy, Jean 22 January 1965 (has links) (PDF)
On appelle "bronzes oxygénés", ou tout simplement bronzes des composés de formule générale MxAyOz dans laquelle M est un élément métallique généralement monovalent et A un métal de transition simultanément présent sous deux degrés d'oxydation différents ; cette propriété s'exprime par la formule détaillée suivante....
166

Sur quelques nouvelles familles de composés non-stoechiométriques du vanadium

Galy, Jean 21 May 1966 (has links) (PDF)
F. Wöhler signalait dès 1824 l'obtention de produits fortement colorés d'aspect métallique par réduction des tungstates de sodium par l'hydrogène (1). J. Malaguti leur attribua en 1835 une formule xNa2O, yWO3, WO2, avec x et y entiers, faisant ressortir la présence simultanée de tungstène aux degrés d'oxydation 4 et 6 (2)....
167

Enhanced Li-ion intercalation properties of vanadium oxides /

Wang, Ying, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 156-167).
168

Experimental investigation of molecular solids and vanadium at high pressure and temperature

Jenei, Zsolt January 2009 (has links)
Understanding high pressure effects on simple molecular system is of great interest for condensed matter science and geophysics. Accessing the static pressure and temperature regions found in planetary interiors is made possible by the development of the Diamond Anvil Cell technique. We developed a double sided resistive heating method for the membrane DAC operating in low pressure (<0.5 mTorr) pressure environment requiring only 175 W input power to reach sample temperatures up to 1300 K. We applied this technique successfully to study molecular solids at high temperatures, such as H2, N2 and CO2. We made an attempt to determine the melting line of hydrogen and present data up to 26 GPa in agreement with literature. Raman spectroscopy of Nitrogen indicates a high stability of the ε molecular phase, while θ phase is only accessible via certain P, T paths. Studies of solid CO2 at high pressure and temperature lead to the discovery of a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II above 50 GPa at 530-650 K, or by isobaric heating of CO2-III above 55 GPa. From our X-ray diffraction experiment on isothermally compressed H2O we report a coexistence of ice VII and symmetric ice X from the start of the transition pressure 40GPa to just below 100 GPa and a volume change of 4% across the transition. Vanadium, a transition metal undergoes a phase transition upon compression unlike other elements (Nb, Ta) from its group. We confirm the bcc phase transition to rhombohedral structure at 62 GPa under quasi hydrostatic compression in Ne pressure medium. Compression without pressure medium results in a much lower 30 GPa transition pressure at room temperature and 37 GPa at 425 K, pointing to a positive phase line between the bcc and rhombohedral crystalline phases.
169

Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates

PUTTASWAMY, NAVEEN V 26 August 2011
The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, ¡®the form of oil in oil sands¡¯, is highly viscous, it requires thermal upgrading to produce SCO. Coking technology is used to convert heavy bitumen fractions to lighter volatile fractions. During this process, an enormous volume of solid coke is produced and the metal impurities (e.g. Al, Fe, Mn, Ni, Ti and V) present in bitumen fractions end-up in the coke particles. As coke demands significant space for storage, oil sands companies are exploring options for placing coke into reclamation landscapes for long term storage and recovery. However, coke holds appreciable amounts of potentially leachable metals that may impede the performance of reclamation landscapes. Although two previous coke leaching studies had showed that coke released metals into water at concentrations exceeding the Canadian guidelines for the protection of aquatic life, the ecotoxicological hazard and risk of these metals were not well characterized. Therefore, the overall goal of this research was to characterize the fate and toxicity of metals associated with coke. In this research, the toxicity of coke leachates collected from oil sands field sites and those artificially generated in the laboratory were evaluated using a standard three-brood Ceriodaphnia dubia tests. Coke leachates (CLs) collected over a period of 20 months from two field lysimeters were found to be acutely toxic to C. dubia. Vanadium concentrations were significantly higher (p¡Ü0.05) than concentrations of all other metals in CLs from both lysimeters, and also in leachates from a laboratory batch renewal leaching study. Furthermore, toxic unit (TU) calculations suggested that Ni and V were likely the cause of CL toxicity, but this was not explicitly proven. Therefore, a chronic toxicity identification and evaluation (TIE) approach was adopted to identify and confirm the cause(s) of CL toxicity. Coke was subjected to a 15 day batch leaching process in the laboratory at pH 5.5 and 9.5 in order to characterize the effect of pH on metals release from coke, and to generate CLs for use in TIE tests. The 7-day LC50 estimates for C. dubia survival were 6.3% and 28.7% (v/v) for CLs generated at pH 5.5 and 9.5, respectively. The dissolved concentrations of Mn, Ni and Zn were high (p¡Ü0.05) in pH 5.5 CL, whereas Al, Mo and V were high (p¡Ü0.05) in pH 9.5 CL. Evidence gathered from a series of chronic TIE tests revealed that Ni and V were the cause of toxicity in pH 5.5 CL, whereas V was the primary cause of toxicity in pH 9.5 CL. Further, the influence of bicarbonate, chloride and sulfate ions on metals release, speciation and Ni and V toxicity was investigated. The type and amount of metals released from coke was significantly influenced by the ion type elevated in the leaching solution. Specifically, sulfate influenced mobilization of Ni, Fe, Mn and Zn from coke, whereas bicarbonate enhanced Al, Mo and V releases from coke. With respect to toxicity, increasing bicarbonate decreased the 7-day Ni2+ IC50 from 6.3 to 2.3 ¦Ìg Ni2+/L suggesting enhanced Ni toxicity at high pH or alkalinity. Conversely, sulfate showed a protective effect against V toxicity to C. dubia. The research presented in this thesis suggests that coke will not be inert when stored in reclamation landscapes and that metals, particularly Ni and V, could reach ecotoxicologically relevant levels in surface waters or substrate porewaters, under favourable leaching conditions. Operationally, efforts should focus on remediation and monitoring of metals released from coke, particularly Ni and V, in impacted wetlands, especially before discharging water into natural wetlands and/or local streams and rivers.
170

Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates

PUTTASWAMY, NAVEEN V 26 August 2011 (has links)
The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, ¡®the form of oil in oil sands¡¯, is highly viscous, it requires thermal upgrading to produce SCO. Coking technology is used to convert heavy bitumen fractions to lighter volatile fractions. During this process, an enormous volume of solid coke is produced and the metal impurities (e.g. Al, Fe, Mn, Ni, Ti and V) present in bitumen fractions end-up in the coke particles. As coke demands significant space for storage, oil sands companies are exploring options for placing coke into reclamation landscapes for long term storage and recovery. However, coke holds appreciable amounts of potentially leachable metals that may impede the performance of reclamation landscapes. Although two previous coke leaching studies had showed that coke released metals into water at concentrations exceeding the Canadian guidelines for the protection of aquatic life, the ecotoxicological hazard and risk of these metals were not well characterized. Therefore, the overall goal of this research was to characterize the fate and toxicity of metals associated with coke. In this research, the toxicity of coke leachates collected from oil sands field sites and those artificially generated in the laboratory were evaluated using a standard three-brood Ceriodaphnia dubia tests. Coke leachates (CLs) collected over a period of 20 months from two field lysimeters were found to be acutely toxic to C. dubia. Vanadium concentrations were significantly higher (p¡Ü0.05) than concentrations of all other metals in CLs from both lysimeters, and also in leachates from a laboratory batch renewal leaching study. Furthermore, toxic unit (TU) calculations suggested that Ni and V were likely the cause of CL toxicity, but this was not explicitly proven. Therefore, a chronic toxicity identification and evaluation (TIE) approach was adopted to identify and confirm the cause(s) of CL toxicity. Coke was subjected to a 15 day batch leaching process in the laboratory at pH 5.5 and 9.5 in order to characterize the effect of pH on metals release from coke, and to generate CLs for use in TIE tests. The 7-day LC50 estimates for C. dubia survival were 6.3% and 28.7% (v/v) for CLs generated at pH 5.5 and 9.5, respectively. The dissolved concentrations of Mn, Ni and Zn were high (p¡Ü0.05) in pH 5.5 CL, whereas Al, Mo and V were high (p¡Ü0.05) in pH 9.5 CL. Evidence gathered from a series of chronic TIE tests revealed that Ni and V were the cause of toxicity in pH 5.5 CL, whereas V was the primary cause of toxicity in pH 9.5 CL. Further, the influence of bicarbonate, chloride and sulfate ions on metals release, speciation and Ni and V toxicity was investigated. The type and amount of metals released from coke was significantly influenced by the ion type elevated in the leaching solution. Specifically, sulfate influenced mobilization of Ni, Fe, Mn and Zn from coke, whereas bicarbonate enhanced Al, Mo and V releases from coke. With respect to toxicity, increasing bicarbonate decreased the 7-day Ni2+ IC50 from 6.3 to 2.3 ¦Ìg Ni2+/L suggesting enhanced Ni toxicity at high pH or alkalinity. Conversely, sulfate showed a protective effect against V toxicity to C. dubia. The research presented in this thesis suggests that coke will not be inert when stored in reclamation landscapes and that metals, particularly Ni and V, could reach ecotoxicologically relevant levels in surface waters or substrate porewaters, under favourable leaching conditions. Operationally, efforts should focus on remediation and monitoring of metals released from coke, particularly Ni and V, in impacted wetlands, especially before discharging water into natural wetlands and/or local streams and rivers.

Page generated in 0.0284 seconds