• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 15
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 168
  • 42
  • 38
  • 31
  • 29
  • 29
  • 28
  • 28
  • 27
  • 26
  • 26
  • 23
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

STUDY OF CONNECTIVITY PROBABILITY IN VANETS BY A TWO-DIMENSIONAL PLATOON-BASED MODEL

Donglin Liu (11139153) 06 August 2021 (has links)
With the fast development of 5G networks and the advancement in networking technologies, more and more new technologies such as internet of vehicles (IoV) is catching our eyes. With technologies of artificial intelligence and automatic control, IoV is transformed into an intelligent transportation system (ITS). The object of this thesis is to analyze the connectivity probability issues in vehicle ad hoc networks (VANETs), which is a subset of ITS. This will be achieved by a platoon-based two dimensional model. In order to make the results more accurate and more close to real scenario, different situations will be analyzed separately, and different types of platoon will be included. In addition, other system parameters are also discussed and stimulated. The results show that many parameters like the increases of traffic density, ratio of platoon, and lane numbers will improve connectivity probability. No-leader based platoons are easier to connect to the base stations compared to leader based platoons.
112

Range Modulation Strategy for Minimizing Interference in Vehicle-to-Vehicle Safety Communication

Parrish, Mason D. 22 April 2022 (has links)
No description available.
113

Simulating a Universal Geocast Scheme for Vehicular Ad Hoc Networks

Bovee, Benjamin L 01 January 2011 (has links) (PDF)
Recently a number of communications schemes have been proposed for Vehicular Ad hoc Networks (VANETs). One of these, the Universal Geocast Scheme (UGS) proposed by Hossein Pishro-Nik and Mohammad Nekoui, provides for a diverse variety of VANET-specific characteristics such as time-varying topology, protocol variation based on road congestion, and support for non line-of-sight communication. In this research, the UGS protocol is extended to consider inter-vehicle multi-hop connections in intersections with surrounding obstructions along with single-hop communications in an open road scenario. Since UGS is a probabilistic, repetition-based scheme, it supports the capacity-delay tradeoffs crucial for periodic safety message exchange. The approach is shown to support both vehicle-to-vehicle and vehicle-to-infrastructure communication. This research accurately evaluates this scheme using network (NS-2) and mobility (SUMO) simulators, verifying two crucial elements of successful VANETs, received packet ratio and message delay. A contemporary wireless radio propagation model is used to augment accuracy. Results show a 6% improvement in received packet ratio in intersection simulations combined with a decrease in average packet delay versus a previous, well-known inter-vehicle communication protocol.
114

Lightweight Blockchains and Their Network Impact on Vehicular Ad-hoc Network-based Blockchain Applications

Bowlin, Edgar 01 August 2023 (has links) (PDF)
Vehicular Ad-hoc Networks (VANETs) provide networks for smart vehicles and will enable future systems to provide services that enhance the overall transportation experience. However, these applications require consideration to possible damage to both property and human life. Communication between vehicles requires data immutability and user privacies to provide safe operation of the system. Blockchains can provide these properties and more to create a more secure and decentralized system. However, a chain’s security comes from the chain length. VANETs’ ephemeral connections provide harm limits how much data can be exchanged during vehicle rendezvous. This thesis investigates lightweight blockchains that operate with lower overheads. A survey of current techniques to accomplish this are discussed in Chapter 1. Two techniques are demonstrated within two separate environments to demonstrate the network overhead reductions when using a lightweight blockchain with respect to network and storage loads within these VANET environments.
115

VANET Broadcast Protocol: A Multi-Hop Routing Framework for Vehicular Networks in ns-3

Bjorndahl, William M. 01 January 2022 (has links)
Vehicles are more frequently being built with hardware that supports wireless communica- tion capabilities. Dedicated short-range communications (DSRC) is a standard that enables the hardware on vehicles to communicate with one another directly rather than through external infrastructure such as a cellular tower. With DSRC supporting small-range communications, multi-hop routing is utilized when a packet needs to reach a long-range destination. A vehicular ad-hoc network (VANET) broadcast protocol (VBP) was developed. This thesis introduces VBP, an open-source framework for simulating multi-hop routing on mobile and wireless vehicular networks. VBP is built for the routing layer of the network simulation tool called network simulator 3 (ns-3) and contains a custom protocol that adapts to various traffic conditions on a roadway. To test VBP we ran six simulations across three traffic levels. Results confirm that VBP successfully routes packets or queues packets when a first or next hop is not available. The development process of VBP is documented to help researchers who are trying to create a custom routing protocol for ns-3.
116

Evaluation of the Proof-of-Location Scheme Vouch : in a Real-World Environment

Säfström, Felix January 2022 (has links)
This work first implements a prototype of the proof-of-location scheme Vouch in order for an evaluation to be conducted in a real-world environment. With simulations of the scheme showing promising results, the next step would be an evaluation of the schemes performance in the real-world. This report introduces the scheme and similar works in relation to implementation and evaluation. Method of implementation is presented followed by an evaluation. The evaluation focuses on detection accuracy of the scheme by investigating impacts of the inevitably arising staleness. Contributors of staleness are identified and their impacts on overall detection accuracy of Vouch are measured. With the prototype successfully implemented, measurements showed a trend in improving detection accuracy with higher proof update frequencies, reaching as high as 9̃5% in a high velocity environment. The results shows that the Vouch scheme not only gives promising results in simulation, but also in the real-world.
117

Vehicle-to-Vehicle Forwarding in Green Vehicular Infrastructure

Azimifar, Morteza 10 1900 (has links)
<p>Smart scheduling can be used to reduce infrastructure-to-vehicle</p> <p>energy costs in delay tolerant vehicular</p> <p>networks (Hammad et al., 2010).. In this thesis we show that by combining</p> <p>this with vehicle-to-vehicle (V2V) forwarding, energy efficiency can</p> <p>be increased beyond that possible in the single hop case. This is</p> <p>accomplished by having the roadside infrastructure forward packets</p> <p>through vehicles which are in energy favourable locations. We first</p> <p>derive offline bounds on the downlink energy usage for a given input</p> <p>sample function when V2V forwarding is used. Separate bounds are given</p> <p>for the off-channel and in-channel forwarding cases. These bounds are</p> <p>used for comparisons with a variety of proposed online scheduling</p> <p>algorithms. The paper then introduces online algorithms for both</p> <p>fixed bit rate and variable bit rate air interface options. The first</p> <p>algorithm is based on a greedy local optimization (GLOA). A version of</p> <p>this algorithm which uses a minimum cost flow graph scheduler is also</p> <p>introduced. A more sophisticated algorithm is then proposed which is</p> <p>based on a finite window group optimization (FWGO). Versions of these</p> <p>algorithms are also proposed which use in-channel vehicle-to-vehicle</p> <p>scheduling. The proposed algorithms are also adapted to the variable</p> <p>bit rate air interface case. Results from a variety of experiments</p> <p>show that the proposed scheduling algorithms can significantly improve</p> <p>the downlink energy requirements of the roadside unit compared to the</p> <p>case where vehicle-to-vehicle packet forwarding is not used. The</p> <p>performance improvements are especially strong under heavy loading</p> <p>conditions and when the variation in vehicle communication</p> <p>requirements or vehicle speed is high.</p> / Master of Applied Science (MASc)
118

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure

Hammad, Abdulla A. 04 1900 (has links)
<p>This thesis proposes different scheduling algorithm to be implemented on the Roadside Units in ITS environment. Both variable and constant bit rate cases are considered.</p> / <p>Vehicular Ad-hoc Networks (VANETs) will be an integral part of future Intelligent Trans- portation Systems (ITS). In highway settings where electrical power connections may not be available, road-side infrastructure will often be powered by renewable energy sources, such as solar power. For this reason, energy efficient designs are desirable.</p> <p>This thesis considers the problem of energy efficient downlink scheduling for road- side infrastructure. In the first part of the thesis, the constant bit rate (CBR) air interface case is investigated. Packet-based and timeslot-based scheduling models for the theoretical minimum energy bound are considered. Timeslot-based scheduling is then formulated as a Mixed Integer Linear Program (MILP). Following this, three energy efficient online scheduling algorithms with varying complexity are introduced. Results from a variety of experiments show that the proposed scheduling algorithms perform well when compared to the energy lower bounds.</p> <p>In the second part of the thesis, the variable bit rate (VBR) air interface option is considered. Offline scheduling formulations are derived that provide lower bounds on the energy required to fufill vehicle requests. An integer linear program (ILP) is introduced which can be solved to find optimal offline VBR schedules. Two flow graph based models are then introduced. The first uses Generalized Flow (GF) graphs and the second uses time expanded graphs (TEGs) to model the scheduling problem. Four online scheduling algorithms with varying energy efficiency, fairness and computational complexities are developed. The proposed algorithms’ performance is examined under different traffic scenarios and they are found to perform well compared to the lower bound.</p> / Doctor of Philosophy (PhD)
119

Estratégia adaptativa para disseminação de dados usando a força do sinal / Adaptative strategy for data dissemination using signal strenght

Correa, Cláudio 17 December 2018 (has links)
Rede Ad hoc Veicular (VANET) é um subconjunto singular das redes ad hoc móveis (MANET), com o diferencial de que os nós são veículos providos de tecnologia própria de comunicação e que interagem para formar redes espontâneas, valendo-se de pouca ou nenhuma infraestrutura estabelecida previamente. VANETs admitem a integração de diferentes tecnologias sem fio na pretensão de mitigar adversidades, agregar segurança e eficiência ao tráfego. Na disseminação de dados, um salto único é suficiente para orientar os elementos ao alcance do sinal de rádio, e nós intermediários sustentam a comunicação aos demais, em encaminhamento multihop. Amparados em dispositivos embarcados, os veículos produzem registros, detectam sinais, trocam advertências e métricas. Avaliações dessas informações permitem ao condutor decisões ou reações antecipadas em situações adversas, a exemplo dos acidentes ou congestionamentos. Nesse contexto, a execução deste trabalho trata questões para elaborar estratégias adaptativas inteligentes de disseminação de dados, uma vez que as mesmas se consolidam como lastros da comunicação em VANET com condições adversas de operação. A abordagem proposta se utiliza de sistemas fuzzy para a detecção de congestionamento, com o propósito de agregar autonomia e adaptar a estratégia de disseminação às condições de tráfego identificadas. A convergência nos desenvolvimentos realizados se reflete na estratégia eFIRST, uma solução robusta para a detecção autônoma da condição atual de congestionamento que resguarda a disseminação adaptativa de alertas e abranda o problema da interrupção no tráfego. A abordagem se sustenta apenas na comunicação entre veículos e nos registros de identificação da vizinhança local, agregados em uma estratégia fuzzy e no ajuste adaptativo da potência do sinal de transmissão. Em conformidade com as tendências de condução e com os sistemas inteligentes, este desenvolvimento contribui com subsídios para ratificar a aproximação fuzzy como estratégia adaptativa às flutuações na densidade veicular, em diferentes cenários e regimes de tráfego. As avaliações comparativas do eFIRST respaldam concluir que a estratégia oportuniza o equilíbrio otimizado das perdas, colisões e cobertura, com superior alcance de propagação e redução dos congestionamentos. / Vehicular Ad hoc Network (VANET) is a unique subset of mobile ad hoc networks (MANET), with the difference that nodes are vehicles provided with their own communication technology and interact to form spontaneous networks, with little or no infrastructure previously established. VANETs support the integration of different wireless technologies in order to mitigate adversities, add security and efficiency to traffic. In the data dissemination, a single hop is sufficient to guide the elements within reach of the radio signal, and intermediary nodes support the communication with the others in multihop routing. Supported by embedded devices, vehicles produce records, detect signals, exchange warnings and metrics. Assessments of this information allow the driver to make decisions or react beforehand in adverse situations, such as accidents or traffic congestions. From the observations in this context, this work deals with questions to elaborate intelligent adaptive strategies in data dissemination, since they consolidate themselves as ballast communication in VANET with adverse operating conditions. The proposed approach uses fuzzy systems to detect traffic congestion, with the purpose of aggregating autonomy and adapting the dissemination strategy to the identified traffic conditions. The convergence in the developments performed is reflected in the eFIRST strategy, a robust solution for the autonomous detection of the current traffic congestion condition that protects the adaptive dissemination of alerts and reduces the problem of the interruption in the traffic. The approach is supported only by communication between vehicles and in local neighborhood identification records, aggregated in a fuzzy strategy and in the adaptive adjustment of transmission signal power. In accordance with the driving trends and with the intelligent systems, this development contributes with assistance for ratify the fuzzy approach as an adaptive strategy to fluctuations in vehicular density in different scenarios and traffic regimes. Comparative evaluations of eFIRST support the conclusion that the strategy favors the optimal balance of losses, collisions and coverage, with a greater range of propagation and reduction of congestion.
120

Architectures cross-layer PHY/MAC pour réduire l'effet de blocage de réception dans les réseaux véhiculaires ad-hoc / Cross-layer designs PHY/MAC for receiver blocking problem in vehicular ad-hoc networks

Bouraoui, Basma 02 March 2017 (has links)
Le protocole MAC du standard IEEE 802.11p dédié aux réseaux véhiculaires interdit les transmissions simultanées dans une même zone de détection afin d’éviter d’éventuelles interférences entre les véhicules voisins. Cette interdiction entraîne un blocage temporaire de réception de données, ce qui diminue le débit global du réseau. Pour résoudre ce problème, nous proposons dans cette thèse une architecture cross-layer PHY/MAC basée sur un algorithme de sélection d’antennes émettrices et un protocole MAC dédié afin de réduire le blocage. Ce cross-layer permet au récepteur de choisir la meilleure combinaison d’antennes émettrices pour améliorer le débit utile normalisé de chaque lien V2V. L’algorithme est présenté avec une méthode de détection multi-utilisateurs. Cette méthode annule les interférences entre voisins et permet à plusieurs véhicules d’émettre des données simultanément. Le protocole MAC associé assure la coordination entre les véhicules durant les communications. Les résultats de simulation montrent une amélioration du débit utile normalisé du réseau en comparaison au standard actuel. Néanmoins, ces bonnes performances diminuent avec l’augmentation de la densité véhiculaire. Pour pallier à cette baisse, nous proposons de joindre à la première solution une nouvelle architecture crosslayer PHY/MAC. Cette architecture est basée sur un algorithme d’adaptation de la puissance émise en fonction de la densité de voisinage du récepteur. Elle est également accompagnée par un protocole MAC dédié. Les résultats de simulation montrent que cette solution permet à plus de véhicules de communiquer simultanément et ainsi améliore significativement le débit utile normalisé notamment dans les réseaux véhiculaires denses. / The MAC protocol IEEE 802.11p, dedicated to vehicular ad-hoc networks VANETs, prohibits simultaneous transmissions in the same detection area, in order to avoid interference between neighboring vehicles. This prohibition causes a temporary data reception blocking, which reduces the network throughput. To reduce this adverse impact, we propose in this thesis a cross-layer design PHY/MAC based on a transmit antennas selection algorithm jointly with a dedicated MAC protocol. This design allows receivers to select the best combination of transmit antennas to improve the throughput of each V2V link. The algorithm is presented with a multi-user detection method, which cancels neighbor’s interference and allows vehicles to transmit data simultaneously. The associated MAC protocol ensures the coordination between vehicles during the simultaneous transmission period. The simulation results show a significant network throughput improvement compared to the conventional case. However, this improvement is less important in dense VANETs. For this purpose, we propose to join a cross-layer design PHY/MAC based on a transmit power adaptation algorithm. This design allows transmitters to choice the adequate power level based on corresponding receivers density. The simulation results show that this solution allows more vehicles to communicate simultaneously and thus improves the network throughput, in particular in dense VANETs.

Page generated in 0.1203 seconds