• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese, fotoluminescência e caracterização elétrica de nanoestruturas de ZnO

Cauduro, André Luís Fernandes January 2012 (has links)
Nanofios semicondutores de óxido metálico apresentam enorme potencial em aplicações de nano-sensoriamento de diferentes gases e substâncias químicas e biológicas, bem como na aplicação a detectores UV-visível. Neste trabalho, desenvolvemos e aperfeiçoamos a síntese de nanofios de ZnO em substratos de safira (001), silício (111) e silício (100) sob diferentes concentrações de oxigênio usando o processo de transporte de vapor-liquido-sólido (VLS). No presente trabalho, investigamos a influência da concentração de oxigênio no crescimento de nanofios de ZnO por Espectroscopia de Fotoluminescência a temperatura variável com a finalidade de estudo da mudança na concentração de defeitos. Apresentamos, ainda, caracterizações elétricas (IxV e Ixt) de nanoestruturas de ZnO sob diferentes pressões com o objetivo de estudar os defeitos envolvidos nos processos de transportes eletrônicos. Por último, propomos o desenvolvimento de micro-contatos através da técnica de microfeixe iônico e através de nanolitografia por feixe de elétrons com a finalidade de aplicações a sensores químicos, gasosos e fotodetectores. / Metal oxide nanowires semiconductors have enormous potential in high-sensitive, fast and selective sensing applications. It may be used to selectively detect different gases, chemical and biological substances and also in UV-visible photodetectors. The described processes involve the synthesis as well as the characterization of ZnO nanowires grown on sapphire (001), silicon (100) e silicon (111) substrates by the Vapor-liquid-solid transport method. In the present work, we describe the influence of oxygen concentration introduced in the growth step measured by photoluminescence at variable temperature to demonstrate the change in defect levels emission (DLE). Furthermore, we have shown electrical characterization (IxV and Ixt) in order to study the ambient effect for transport mechanisms in ZnO nanowires. We also report the development of crucial steps in the fabrication for an upcoming ZnO nanowire sensor device (gas, chemical and photodetector) using lithography techniques such as ion micro-beam and electron beam with the purpose of fabricating metallic micro-pads.
2

Síntese, fotoluminescência e caracterização elétrica de nanoestruturas de ZnO

Cauduro, André Luís Fernandes January 2012 (has links)
Nanofios semicondutores de óxido metálico apresentam enorme potencial em aplicações de nano-sensoriamento de diferentes gases e substâncias químicas e biológicas, bem como na aplicação a detectores UV-visível. Neste trabalho, desenvolvemos e aperfeiçoamos a síntese de nanofios de ZnO em substratos de safira (001), silício (111) e silício (100) sob diferentes concentrações de oxigênio usando o processo de transporte de vapor-liquido-sólido (VLS). No presente trabalho, investigamos a influência da concentração de oxigênio no crescimento de nanofios de ZnO por Espectroscopia de Fotoluminescência a temperatura variável com a finalidade de estudo da mudança na concentração de defeitos. Apresentamos, ainda, caracterizações elétricas (IxV e Ixt) de nanoestruturas de ZnO sob diferentes pressões com o objetivo de estudar os defeitos envolvidos nos processos de transportes eletrônicos. Por último, propomos o desenvolvimento de micro-contatos através da técnica de microfeixe iônico e através de nanolitografia por feixe de elétrons com a finalidade de aplicações a sensores químicos, gasosos e fotodetectores. / Metal oxide nanowires semiconductors have enormous potential in high-sensitive, fast and selective sensing applications. It may be used to selectively detect different gases, chemical and biological substances and also in UV-visible photodetectors. The described processes involve the synthesis as well as the characterization of ZnO nanowires grown on sapphire (001), silicon (100) e silicon (111) substrates by the Vapor-liquid-solid transport method. In the present work, we describe the influence of oxygen concentration introduced in the growth step measured by photoluminescence at variable temperature to demonstrate the change in defect levels emission (DLE). Furthermore, we have shown electrical characterization (IxV and Ixt) in order to study the ambient effect for transport mechanisms in ZnO nanowires. We also report the development of crucial steps in the fabrication for an upcoming ZnO nanowire sensor device (gas, chemical and photodetector) using lithography techniques such as ion micro-beam and electron beam with the purpose of fabricating metallic micro-pads.
3

Síntese, fotoluminescência e caracterização elétrica de nanoestruturas de ZnO

Cauduro, André Luís Fernandes January 2012 (has links)
Nanofios semicondutores de óxido metálico apresentam enorme potencial em aplicações de nano-sensoriamento de diferentes gases e substâncias químicas e biológicas, bem como na aplicação a detectores UV-visível. Neste trabalho, desenvolvemos e aperfeiçoamos a síntese de nanofios de ZnO em substratos de safira (001), silício (111) e silício (100) sob diferentes concentrações de oxigênio usando o processo de transporte de vapor-liquido-sólido (VLS). No presente trabalho, investigamos a influência da concentração de oxigênio no crescimento de nanofios de ZnO por Espectroscopia de Fotoluminescência a temperatura variável com a finalidade de estudo da mudança na concentração de defeitos. Apresentamos, ainda, caracterizações elétricas (IxV e Ixt) de nanoestruturas de ZnO sob diferentes pressões com o objetivo de estudar os defeitos envolvidos nos processos de transportes eletrônicos. Por último, propomos o desenvolvimento de micro-contatos através da técnica de microfeixe iônico e através de nanolitografia por feixe de elétrons com a finalidade de aplicações a sensores químicos, gasosos e fotodetectores. / Metal oxide nanowires semiconductors have enormous potential in high-sensitive, fast and selective sensing applications. It may be used to selectively detect different gases, chemical and biological substances and also in UV-visible photodetectors. The described processes involve the synthesis as well as the characterization of ZnO nanowires grown on sapphire (001), silicon (100) e silicon (111) substrates by the Vapor-liquid-solid transport method. In the present work, we describe the influence of oxygen concentration introduced in the growth step measured by photoluminescence at variable temperature to demonstrate the change in defect levels emission (DLE). Furthermore, we have shown electrical characterization (IxV and Ixt) in order to study the ambient effect for transport mechanisms in ZnO nanowires. We also report the development of crucial steps in the fabrication for an upcoming ZnO nanowire sensor device (gas, chemical and photodetector) using lithography techniques such as ion micro-beam and electron beam with the purpose of fabricating metallic micro-pads.
4

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
5

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
6

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
7

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
8

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
9

The role of the catalyst in the growth of one-dimensional nanostructures

Kirkham, Melanie 10 November 2009 (has links)
Quasi one-dimensional (1D) nanostructures show great promise for many applications, including in solar cells, nanogenerators and chemical sensors, due to the high surface-to-volume ratio and unique properties of nanostructures. The growth of these nanostructures is commonly catalyzed by metal nanoparticles and generally attributed to the vapor-liquid-solid (VLS) mechanism. The purpose of this research is to better understand the role of the catalyst nanoparticles in the growth of 1D nanostructures, in order to allow improved control of the synthesis process. To this end, nanostructures were grown with a variety of compositions, including Au- and Sn-catalyzed ZnO, Au-catalyzed FexOy and Au-catalyzed Si nanostructures. The morphology of the nanostructures was characterized with electron microscopy, and the crystallographic orientation with X-ray texture analysis. The catalyst particles were further characterized with both in-situ and post-growth X-ray diffraction. The types of bonding in the source material and catalyst play a significant role in the diffusion path of the source material to the growth front and in the catalyst particle state during growth. Dissimilar bonding types in the source material and catalyst prevent bulk diffusion of the source material through the catalyst, thereby preventing eutectic melting of the catalyst. These results bring new insight into the catalyzed growth of 1D nanostructures and assist in the informed choice of appropriate catalyst materials, which may aid the utilization of 1D nanostructures in energy-related and other applications.

Page generated in 0.0855 seconds