Spelling suggestions: "subject:"variété centrale"" "subject:"variéték centrale""
1 |
Variété centrale hautement oscillante et une application en écologie / Highly oscillating center manifold and an application in ecologySauzeau, Julie 07 June 2016 (has links)
Nous avons étudié un système différentiel régi par deux dynamiques : l'une de type variété centrale et l'autre de type oscillation rapide périodique. Nous avons cherché à obtenir des informations sur le comportement qualitatif du système et à l'approcher. Nous avons démontré l'existence d'une dynamique asymptotique rapidement oscillante et nous l'avons utilisée pour approcher le système. Ensuite, nous avons appliqué ces résultats à l'étude d'un système écologique d'interaction proie-prédateur. De plus, nous avons utilisé la théorie des B-séries pour obtenir des développements formels à tout ordre des quantités liées à la dynamique asymptotique. Enfin, nous avons approché le système pour tout temps par la composée d'un changement de variable et de la solution d'un système différentiel partiellement découplé. / We have studied a differential system ruled by two dynamics : a center manifold dynamics and a periodic highly oscillating dynamics. We wanted to find informations about the qualitative behaviour of the system, and to approximate it. We have proved the existence of a highly oscillating asymptotic dynamics, and we have used it approximate the system. Then, we have applied this results to an ecological system of prey-predator interaction. Moreover, we have used the B-series theory to obtain formal expansions of the quantities related to the center manifold. Lastly, we have approximated the system for all time by the composition of a change of variable and of the solution of a partially decoupled differential system.
|
2 |
Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discretsNOBLE, Pascal 18 December 2003 (has links) (PDF)
Dans cette thèse, on analyse par des méthodes de variétés invariantes deux problèmes distincts: le phénomène des roll-waves en hydraulique et l'existence de breathers discrets dans des réseaux non linéaires discrets. Les roll-waves sont des ondes progressives périodiques et discontinues solutions entropiques des équations de Saint Venant. Grace aux théorèmes de Fenichel, on montre l'existence de roll-waves continues "visqueuses" proches des roll-waves discontinues lorsqu'on ajouté aux équations un petit terme de viscosité. On étudie ensuite la stabilité linéaire de ces roll-waves discontinues. Enfin, on montre l'existence de roll-waves de petite amplitude dans des canaux à fond périodiques.\\ Les breathers discrets sont des oscillations périodiques, localisées en espace dans des réseaux non linéaires discrets. On analyse d'abord le modèle Fermi-Pasta-Ulam (FPU) diatomique. En formulant le problème sous la forme d'un mapping en dimension infinie, on montre, via une réduction à une variété centrale, l'existence de breathers discrets de petite amplitude pour des rapports de masses arbitraires. On utilise aussi cette approche pour montrer l'existence de breathers discrets dans des chaines de spins ferromagnétiques.
|
3 |
Méthodes d'analyse non-linéaires pour les modèles de champs neuronauxVeltz, Romain 16 December 2011 (has links) (PDF)
L'objectif de cette thèse est la compréhension et la modélisation du cortex visuel des mammifères avec des modèles à taux de décharge, appelés les champs neuronaux, où les fines spécificités du calcul neuronal sont négligées. Cette thèse est divisée en trois parties, deux parties théoriques et une plus appliquée. Dans la première partie, nous examinons les états stationnaires des équations des champs neuronaux en utilisant des outils topologiques et la théorie des bifurcations. Nous sommes particulièrement intéressés par le nombre de ces états étant donné un stimulus parce que tous ces états sont des représentations corticales du stimulus. Toutefois, selon les paramètres, les équations du champ de neurones peuvent avoir des solutions stationnaires multiples qui sont autant de représentations corticales du stimulus. Si plus d'une solution stable existe, nous avons montré comment distinguer une de ces activités corticales comme étant la représentation '' principale'' du stimulus et les autres comme des illusions neuronales. L'étude aboutit à un schéma numérique pour calculer les différentes solutions stationnaires du réseau de champ de neurones en utilisant plusieurs paramètres de continuation : ce schéma est utile pour sa capacité à détecter les bifurcations Saddle-Node. Dans la deuxième partie de cette thèse, nous étudions les effets des retards de propagation de l'information, les principaux résultats théoriques étant la preuve d'un théorème de variété centrale. Cependant, le résultat le plus utile est une formule analytique pour les courbes de bifurcation de Hopf dans le plan (vitesse de propagation - délai synaptique). Ces courbes indiquent les paramètres qui produisent des oscillations spontanées des neurones. L'étude du réseau sans cette formule analytique est très laborieuse. Elle a été utilisée pour révéler la structure très complexe du diagramme de bifurcation dans les réseaux de neurones avec retards de propagation. Enfin, dans la dernière partie de cette thèse, nous étudions trois modèles de cortex visuel auxquels nous appliquons les outils développés dans les parties précédentes. Le premier modèle est le Ring Model of orientation tuning pour lequel nous avons découvert l'existence d'un seuil de perception et expliqué comment il peut être observé expérimentalement. Le second modèle étudié est celui Blumenfeld et al., très proche dans sa formulation du modèle précédent, et se fonde sur des données expérimentales (fournis par G. Masson et le laboratoire de F.Chavane à l'INT, Marseille, FRANCE). Nous avons montré comment les symétries imparfaites de la connectivité affectent les réponses du réseau. En particulier, nous avons montré comment le réseau parvient à produire une réponse en accord avec le stimulus malgré ses préférences internes. Enfin, le dernier modèle que nous avons étudié est un modèle de l'aire visuelle V1 que nous avons développé, dans la lignée du travail de Bressloff et al. Nous avons appliqué à ce modèle, les outils mathématiques et informatiques développés dans les parties précédentes. Ce nouveau modèle ne dispose pas d'une connectivité dépendant de l'orientation préférée des neurones. En particulier, nous avons montré que si la vitesse de propagation de l'information était trente fois plus lente, une instabilité pourrait se développer entraînant des illusions périodiques en temps.
|
4 |
INSTABILITE DE SYSTEMES HAMILTONIENS AU SENS DE CHIRIKOV ET BIFURCATION DANS UN PROBLEME D' EVOLUTION NON LINEAIRE ISSU DE LA PHYSIQUEGuillet, Christophe 06 December 2004 (has links) (PDF)
Nous mettons en évidence une condition géométrico-dynamique minimale créant de l'hyperbolicité au voisinage d'un tore homocline transverse partiellement hyperbolique dans un système Hamiltonien presque intégrable à trois degrés de liberté. On en déduit une généralisation du théorème de dynamique symbolique d'Easton. Nous donnons ensuite une estimation optimale du temps de diffusion d'Arnold le long d'une chaîne de transition dans les systèmes Hamiltoniens initialement hyperboliques à trois degrés de liberté en utilisant une chaîne d'orbites périodiques hyperboliques sous-jacente. <br />Nous décrivons ensuite géométriquement à partir d'un système Hamiltonien presque intégrable à trois degrés de liberté à deux paramètres dû à Chirikov, un mécanisme de diffusion mettant en jeu un réseau de plans résonnants parallèles et voisins et un plan résonnant transversal au réseau. Ainsi, nous montrons qu'en dessous d'un certain seuil atteint par le paramètre prépondérant, on peut construire une orbite de transition dérivant en action à travers ce réseau modulationnel. Un des scénarii envisagés, le mécanisme de diffusion modulationnelle, basé sur l'existence de connexions hétéroclines entre tores partiellement hyperboliques issus de deux plans résonnants distincts est valide lorsqu'une condition de chevauchement est vérifiée. <br />Nous étudions enfin le modèle bidimensionnel décrivant un écoulement laminaire avec convection mixte entre deux plaques planes puis dans un tube vertical. Avec des conditions aux bords réduites, nous montrons via le théorème de la variété centrale qu'il existe dans le premier cas une bifurcation de pitchfork pour une valeur critique du nombre de Rayleigh.
|
Page generated in 0.0869 seconds