Spelling suggestions: "subject:"variété dde silberspiegeln"" "subject:"variété dde hertspiegel""
1 |
Modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) / Local model of Hilbert-Siegel moduli schemes in Г₁(p)-levelLiu, Shinan 28 September 2018 (has links)
Dans cette thèse, nous étudions la mauvaise réduction de variétés de Shimura. Plus précisément, nous construisons un modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) sur Spec Zq lorsque p est non-ramifié dans le corps totalement réel, où q est le cardinal résiduel au-dessus de p. Notre outil principal est une variante sur le petit topos de Zariski du complexe de Lie anneau-équivariant Aℓv_G défini par Illusie dans sa thèse, où A est un anneau commutatif et G est un schéma en A-modules.Nous montrons aussi une compatibilité entre le complexe de Lie de G équivariant par l’anneau A, et celui équivariant par le monoïde multiplicatif sous-jacent de A.Ce complexe nous permet de calculer le complexe de Lie Fq-équivariant d’un schéma en groupes de Raynaud, donc de relier le modèle entier et le modèle local. / In this thesis, we study the bad reduction of Shimura varieties. More precisely, we construct a local model of Hilbert-Siegel moduli schemes in level Г₁(p) over Spec Zq when p is unramified in the totally real field, where q is the residue cardinality over p. Our main tool is a variant over the small Zariski topos of the ring-equivariant Lie complex Aℓv_G defined by Illusie in his thesis, where A is a commutative ringand G is a scheme of A-modules. We also prove a compatibility result between thering-equivariant Lie complex and the Lie complex equivariant by the multiplicative monoid underlying this ring. With this complex, we calculate the Fq-equivariant Lie complex of a Raynaud group scheme, then relate the integral model and the local model.
|
Page generated in 0.0711 seconds