Spelling suggestions: "subject:"variété dde dimension trois"" "subject:"variété dee dimension trois""
1 |
Invariants de type fini des variétés de dimension trois et structures spinoriellesMassuyeau, Gwénaël 28 October 2002 (has links) (PDF)
M. Goussarov et K. Habiro ont introduit au milieu des années 90 une théorie d'invariants de type fini pour les 3-variétés compactes orientées. Dans cette thèse, nous raffinons la théorie de Goussarov-Habiro aux cas où ces variétés sont équipées de structures spinorielles ou spinorielles complexes. Dans le cas des 3-variétés fermées spinorielles, nous caractérisons géométriquement les invariants de degré 0 en révélant le rôle joué par certaines formes quadratiques. Nous montrons aussi que l'invariant de Rochlin des 3-variétés spinorielles est un invariant de type fini de degré 1. Nous nous intéressons ensuite aux cylindres d'homologie au-dessus d'une surface compacte orientée avec 0 ou 1 composante de bord. En nous aidant du raffinement spinoriel de la théorie de Goussarov-Habiro, nous caractérisons les invariants de degré 1 des cylindres d'homologie. Dans le cas des 3-variétés spinorielles complexes, nous donnons une caractérisation géométrique des invariants de degré 0. Celle-ci s'exprime par une fonction quadratique canoniquement associée à toute 3-variété fermée spinorielle complexe. Enfin, nous calculons la variation subie par la torsion abélienne de Reidemeister-Turaev d'une 3-variété fermée spinorielle complexe, lorsque celle-ci est twistée le long d'une surface fermée connexe scindante par un difféomorphisme agissant trivialement en homologie. Nous en déduisons en particulier que, dans un sens restreint, la torsion abélienne de Reidemeister-Turaev est multiplicativement un invariant de type fini de degré 1.
|
2 |
Quelques aspects de la théorie des invariants de type fini en topologie de dimension troisMassuyeau, Gwénaël 03 October 2012 (has links) (PDF)
En topologie de dimension trois, les invariants de type fini se caractérisent par leur comportement polynomial vis-à-vis de certaines opérations chirurgicales qui préservent l'homologie des variétés. Motivée par l'approche perturbative des "invariants quantiques", la notion d'invariant de type fini a été initialement formulée par T. Ohtsuki qui en contruisit les premiers exemples ; les fondements théoriques des invariants de type fini ont ensuite été posés par plusieurs auteurs dont M. Goussarov et K. Habiro. Grâce à une construction de T. Le, J. Murakami & T. Ohtsuki basée sur l'intégrale de Kontsevich, on dispose pour les sphères d'homologie d'un invariant de type fini universel à valeurs diagrammatiques. Ce mémoire expose d'une manière synthétique certains aspects de la théorie des invariants de type fini, pour les variétés de dimension trois en général, et pour les cylindres d'homologie en particulier. Nous présentons notamment une extension fonctorielle de l'invariant LMO à une certaine catégorie de cobordismes, et nous appliquons ce foncteur à l'étude du monoïde des cylindres d'homologie. Nous expliquons comment nos constructions et résultats se relient aux travaux antérieurs de D. Johnson, S. Morita et R. Hain sur le groupe de Torelli d'une surface. Nous concluons par quelques problèmes et perspectives de recherche. Certains des travaux exposés dans ce mémoire ont été réalisés en collaboration avec D. Cheptea, K. Habiro et J.-B. Meilhan.
|
Page generated in 0.1169 seconds