Spelling suggestions: "subject:"ariations dde structures dde lodge"" "subject:"ariations dde structures dde hodge""
1 |
Déformations des applications harmoniques torduesSpinaci, Marco 25 November 2013 (has links) (PDF)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour les construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ aux points critiques.
|
2 |
Arakelov inequalities and semistable families of curves uniformized by the unit ball / Inégalités d'Arakelov et familles semistable de courbes uniformisées par la bouleDamjanovic, Nikola 14 June 2018 (has links)
L'objet principal de cette thèse est de démontrer une inégalité d'Arakelov qui consiste à borner le degré d'un sous-faisceau inversible de l'image directe d'un faisceau relatif pluricanonique d'une famille semi-stable de courbes. Un problème naturel qui apparaît est la caractérisation des familles pour lesquelles sont satisfaites le cas d'égalité dans l'inégalité d'Arakelov, i.e. le cas d'égalité d'Arakelov. Peu d'exemples de telles familles sont connus. Dans cette thèse nous en proposons plusieurs en prouvant que le faisceau relatif bicanonique d'une famille semi-stable de courbes uniformisée par la boule unité et dont toutes les fibres singulières sont totalement géodésiques contient un sous-faisceau inversible qui satisfait l'égalité d'Arakelov. / The main object of study in this thesis is an Arakelov inequality which bounds the degree of an invertible subsheaf of the direct image of the pluricanonical relative sheaf of a semistable family of curves. A natural problem that arises is the characterization of those families for which the equality is satisfied in that Arakelov inequality, i.e. the case of Arakelov equality. Few examples of such families are known. In this thesis we provide some examples by proving that the direct image of the bicanonical relative sheaf of a semistable family of curves uniformized by the unit ball, all whose singular fibers are totally geodesic, contains an invertible subsheaf which satisfies Arakelov equality.
|
3 |
Déformations des applications harmoniques tordues / Deformations of twisted harmonic mapsSpinaci, Marco 25 November 2013 (has links)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour le construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ dans les points critiques. / We study the deformations of twisted harmonic maps $f$ with respect to a representation. After constructing a continuous ``universal'' twisted harmonic map, we give a construction of every first order deformation of $f$ in terms of Hodge theory; we apply this result to the moduli space of reductive representations of a K\"ahler group, to show that the critical points of the energy functional $E$ coincide with the monodromy representations of polarized complex variations of Hodge structure. We then proceed to second order deformations, where obstructions arise; we investigate the existence of such deformations, and give a method for constructing them, as well. Applying this to the energy functional as above, we prove (for every finitely presented group) that the energy functional is strictly pluri sub-harmonic on the moduli space of representations; assuming furthermore that the group is Kähler, we study the eigenvalues of the Hessian of $E$ at critical points.
|
Page generated in 0.1794 seconds