Spelling suggestions: "subject:"varieties (iniversal algebra)"" "subject:"varieties (iniversal álgebra)""
1 |
Contributions to the theory of pre-BCK-algebrasSpinks, Matthew (Matthew James), 1970- January 2002 (has links)
Abstract not available
|
2 |
Some Mal'cev conditions for varieties of algebras.Moses, Mogambery. January 1991 (has links)
This dissertation deals with the classification of varieties according to
their Mal'cev properties. In general the so called Mal'cev-type theorems
illustrate an interplay between first order properties of a given class of
algebras and the lattice properties of the congruence lattices of algebras of
the considered class.
CHAPTER 1. A survey of some notational conventions, relevant definitions
and auxiliary results is presented. Several examples of less frequently
used algebras are given together with the important properties of some of
them. The term algebra T(X) and useful results concerning 'term' operations
are established. A K-reflection is defined and a connection between
a K-reflection of an algebra and whether a class K satisfies an identity of
the algebra is established.
CHAPTER 2. The Mal'cev-type theorems are presented in complete
detail for varieties which are congruence permutable, congruence distributive,
arithmetical, congruence modular and congruence regular. Several
examples of varieties which exhibit these properties are presented together
with the necessary verifications.
CHAPTER 3. A general scheme of algorithmic character for some
Mal'cev conditions is presented. R. Wille (1970) and A. F. Pixley (1972)
provided algorithms for the classification of varieties which exhibit strong
Mal'cev properties. This chapter is largely devoted to a modification of
the Wille-Pixley schemes. It must be noted that this modification is quite
different from all such published schemes. The results are the same as in
Wille's scheme but slightly less general than in Pixley's. The text presented
here, however is much simpler. As an example, the scheme is used
to confirm Mal'cev's original theorem on congruence permutable varieties.
Finally, the so-called Chinese var£ety is defined and Mal'cev conditions are
established for such a variety of algebras .
CHAPTER 4. A comprehensive survey of literature concerning Mal'cev
conditions is given in this chapter. / Thesis (M.Sc.)-University of Natal, Durban, 1991.
|
3 |
Varieties of residuated latticesGalatos, Nikolaos. January 1900 (has links)
Thesis (Ph. D. in Mathematics)--Vanderbilt University, 2003. / Title from PDF title screen. Includes bibliographical references and index.
|
4 |
Residually small varieties and commutator theory.Swart, Istine Rodseth. January 2000 (has links)
Chapter 0
In this introductory chapter, certain notational and terminological conventions
are established and a summary given of background results that are
needed in subsequent chapters.
Chapter 1
In this chapter, the notion of a "weak conguence formula" [Tay72], [BB75] is
introduced and used to characterize both subdirectly irreducible algebras and
essential extensions. Special attention is paid to the role they play in varieties
with definable principal congruences.
The chapter focuses on residually small varieties; several of its results take
their motivation from the so-called "Quackenbush Problem" and the "RS Conjecture".
One of the main results presented gives nine equivalent characterizations
of a residually small variety; it is largely due to W. Taylor. It is followed
by several illustrative examples of residually small varieties.
The connections between residual smallness and several other (mostly categorical)
properties are also considered, e.g., absolute retracts, injectivity, congruence
extensibility, transferability of injections and the existence of injective
hulls. A result of Taylor that establishes a bound on the size of an injective
hull is included.
Chapter 2
Beginning with a proof of A. Day's Mal'cev-style characterization of congruence
modular varieties [Day69] (incorporating H.-P. Gumm's "Shifting Lemma"),
this chapter is a self-contained development of commutator theory in
such varieties. We adopt the purely algebraic approach of R. Freese and R.
McKenzie [FM87] but show that, in modular varieties, their notion of the commutator
[α,β] of two congruences α and β of an algebra coincides with that
introduced earlier by J. Hagemann and C. Herrmann [HH79] as well as with
the geometric approach proposed by Gumm [Gum80a],[Gum83].
Basic properties of the commutator are established, such as that it behaves
very well with respect to homomorphisms and sufficiently well in products
and subalgebras. Various characterizations of the condition "(x, y) Є [α,β]”
are proved. These results will be applied in the following chapters. We show
how the theory manifests itself in groups (where it gives the familiar group
theoretic commutator), rings, modules and congruence distributive varieties.
Chapter 3
We define Abelian congruences, and Abelian and affine algebras. Abelian
algebras are algebras A in which [A2, A2] = idA (where A2 and idA are the
greatest and least congruences of A). We show that an affine algebra is polynomially
equivalent to a module over a ring (and is Abelian). We give a proof that
an Abelian algebra in a modular variety is affine; this is Herrmann's Funda-
mental Theorem of Abelian Algebras [Her79]. Herrmann and Gumm [Gum78],
[Gum80a] established that any modular variety has a so-called ternary "difference
term" (a key ingredient of the Fundamental Theorem's proof). We derive
some properties of such a term, the most significant being that its existence
characterizes modular varieties.
Chapter 4
An important result in this chapter (which is due to several authors) is the
description of subdirectly irreducible algebras in a congruence modular variety.
In the case of congruence distributive varieties, this theorem specializes to
Jόnsson's Theorem.
We consider some properties of a commutator identity (Cl) which is a necessary
condition for a modular variety to be residually small. In the main
result of the chapter we see that for a finite algebra A in a modular variety,
the variety V(A) is residually small if and only if the subalgebras of A satisfy
(Cl). This theorem of Freese and McKenzie also proves that a finitely generated
congruence modular residually small variety has a finite residual bound,
and it describes such a bound. Thus, within modular varieties, it proves the
RS Conjecture.
Conclusion
The conclusion is a brief survey of further important results about residually
small varieties, and includes mention of the recently disproved (general) RS
Conjecture. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
|
5 |
Ideals, varieties, and Groebner basesAhlgren, Joyce Christine 01 January 2003 (has links)
The topics explored in this project present and interesting picture of close connections between algebra and geometry. Given a specific system of polynomial equations we show how to construct a Groebner basis using Buchbergers Algorithm. Gröbner bases have very nice properties, e.g. they do give a unique remainder in the division algorithm. We use these bases to solve systems of polynomial quations in several variables and to determine whether a function lies in the ideal.
|
Page generated in 0.0705 seconds