Spelling suggestions: "subject:"detector equilibrium"" "subject:"colector equilibrium""
1 |
Equilibria in the multi-criteria traffic networks / Equilibre dans les réseaux de transport multi-critèreTruong, Thi Thanh Phuong 26 May 2015 (has links)
L'objectif de cette thèse est d'étudier des propriétés des points d'équilibre dans des réseaux de transport multi-critères et de développer des méthodes numériques permettant de trouver l'ensemble des points d'équilibre ou une partie représentative de cet ensemble. Le travail est structure comme suit. Dans le premier chapitre nous donnons une introduction de la thèse. Le chapitre 2 est un rappel de certaines notions que nous utilisons dans les autres. Nous y rappelons le concept de point optimal de Pareto, les fonctions multivoques et les problèmes d'inégalité variationnelle. Nous introduisons certaines fonctions de scalarisation et puis établissons quelques propriétés importantes. Dans le chapitre 3, nous décrivons les réseaux de transport qui sont étudiés dans cette thèse. Dans chaque modèle, nous rappelons les définitions des points d'équilibre et donnons une relation entre ces définitions. Dans le chapitre 4 nous traitons les réseaux de transport multi-critères mono-produit sans contraintes de capacité. Tout d'abord, nous construisons deux problèmes d'optimisation dont les solutions sont exactement l'ensemble des points d'équilibre du modèle initiale et établissons certaines propriétés importantes de continuité et de dérivabilité génériques des fonctions objectifs. Puis nous donnons une formule permettant de calculer le gradient des fonctions objectifs. Nous proposons également un algorithme et prouvons sa convergence pour générer une représentation de l'ensemble des points d'équilibre. Puisque les fonctions objectifs de nos problèmes d'optimisation ne sont pas continues, une méthode de lissage est également considérée afin d'utiliser quelques techniques d'optimisation globale. En fin, nous introduisons le concept de point d'équilibre robuste, puis nous établissons des critères de robustesse et une formule permettant de calculer le rayon de robustesse. Dans le chapitre 5 nous étudions des points d'équilibre vectoriel dans le réseau de transport multi-critères mono-produit sous contraintes de capacité.Tout d'abord, nous proposons un problème d'optimisation équivalent. En utilisant des techniques analogues à celles du chapitre 4 nous obtenons également un sous-ensemble des points d'équilibre du modèle proposé. Dans le dernier chapitre nous considérons des points d'équilibre fort dans le réseau de transport multi-critères multi-produit sous contraintes de capacité. Nous établissons des conditions d'existence des points d'équilibre fort, des relations entre des points d'équilibre fort et des points d'équilibre par rapport à une famille de fonctions ainsi qu'une relation entre des points d'équilibre fort et les points efficaces de l'ensemble des valeurs de la fonction de coût. En plus nous construisons des problèmes d'inéqualité variationnellle, dont les solutions sont les points d'équilibre fort. La dernière partie de ce chapitre est consacrée à un algorithme permettant de trouver des points d'équilibre d'un réseau multi-critères sous contraintes de capacité. Certains exemples numériques sont donnés pour illustrer notre méthode. Nous fermons la thèse avec une liste de références et appendice contenant le code matlab de nos algorithmes. / The purpose of this thesis is to study equilibria in multi-criteria trafficnetworks and develop numerical methods to find the set of all equilibria oronly one representative part of this set. The thesis is structured as follows.In the first chapter we present an introduction of the thesis. Chapter 2is of preliminary character. We recall the concept of Pareto minimal pointsand some notions related to set-valued maps and variational inequality pro-blem. We introduce some scalarizing functions, in particular the so-calledaugmented biggest/smallest monotone functions and augmented signed distance functions, and establish some properties we shall use later.Chapter 3 describes the traffic network models to be studied in this thesis.We define equilibrium for each model and determine a relationship betweenthem. We also give some counter examples for some existing results in therecent literature on this topic.In Chapter 4 we develop a new solution method for multi-criteria net-work equilibrium problems without capacity constraints. To this end we shallconstruct two optimization problems the solutions of which are exactly theset of equilibria of the model, and establish some important generic conti-nuity and differentiability properties of the objective functions. Then we givethe formula to calculate the gradient of the objective functions which enablesus to modify Frank-Wolfe's reduced gradient method to get descent directiontoward an optimal solution. We prove the convergence of the method whichgenerates a nice representative set of equilibria. Since the objective functionsof our optimization problems are not continuous, a method of smoothingthem is also considered in order to see how global optimization algorithmsmay help.We shall also introduce the concept of robust equilibrium, establishcriteria for robustness and a formula to compute the radius of robustness.In Chapter 5 we consider vector equilibrium in the multi-criteria single-product traffic network with capacity constraints.We propose an equivalent optimization problem and establish some im-portant generic continuity and differentiability properties of the objectivefunction. Then we give a formula which allows us to calculate the gradientof the objective function. After that we apply the approach of Chapter 4 toobtain an algorithm for generating equilibria of this network. We also givesome numerical examples to illustrate our approach.In the last chapter we consider strong vector equilibrium in the multi-criteria multi-product traffic network with capacity constraints.We establish conditions for existence of strong vector equilibrium.We alsoestablish relations between equilibrium and efficient points of the value set ofthe cost function and with equilibrium with respect to a family of functions.Moreover we exploit particular increasing functions discussed in Chapter 2 toconstruct variational inequality problems, solutions of which are equilibriumflows. The final part of this chapter is devoted to an algorithm for findingequilibrium flows of a multi-criteria network with capacity constraints. Somenumerical examples are given to illustrate our method and its applicability.A list of references and appendices containing the code Matlab of ouralgorithms follow.
|
2 |
A duality approach to gap functions for variational inequalities and equilibrium problemsLkhamsuren, Altangerel 03 August 2006 (has links) (PDF)
This work aims to investigate some applications of the
conjugate duality for scalar and vector optimization problems to
the construction of gap functions for variational inequalities and
equilibrium problems. The basic idea of the approach is to
reformulate variational inequalities and equilibrium problems into
optimization problems depending on a fixed variable, which allows
us to apply duality results from optimization problems.
Based on some perturbations, first we consider the conjugate
duality for scalar optimization. As applications, duality
investigations for the convex partially separable optimization
problem are discussed.
Afterwards, we concentrate our attention on some applications of
conjugate duality for convex optimization problems in finite and
infinite-dimensional spaces to the construction of a gap function
for variational inequalities and equilibrium problems. To verify
the properties in the definition of a gap function weak and strong
duality are used.
The remainder of this thesis deals with the extension of this
approach to vector variational inequalities and vector equilibrium
problems. By using the perturbation functions in analogy to the
scalar case, different dual problems for vector optimization and
duality assertions for these problems are derived. This study
allows us to propose some set-valued gap functions for the vector
variational inequality. Finally, by applying the Fenchel duality
on the basis of weak orderings, some variational principles for
vector equilibrium problems are investigated.
|
3 |
A duality approach to gap functions for variational inequalities and equilibrium problemsLkhamsuren, Altangerel 25 July 2006 (has links)
This work aims to investigate some applications of the
conjugate duality for scalar and vector optimization problems to
the construction of gap functions for variational inequalities and
equilibrium problems. The basic idea of the approach is to
reformulate variational inequalities and equilibrium problems into
optimization problems depending on a fixed variable, which allows
us to apply duality results from optimization problems.
Based on some perturbations, first we consider the conjugate
duality for scalar optimization. As applications, duality
investigations for the convex partially separable optimization
problem are discussed.
Afterwards, we concentrate our attention on some applications of
conjugate duality for convex optimization problems in finite and
infinite-dimensional spaces to the construction of a gap function
for variational inequalities and equilibrium problems. To verify
the properties in the definition of a gap function weak and strong
duality are used.
The remainder of this thesis deals with the extension of this
approach to vector variational inequalities and vector equilibrium
problems. By using the perturbation functions in analogy to the
scalar case, different dual problems for vector optimization and
duality assertions for these problems are derived. This study
allows us to propose some set-valued gap functions for the vector
variational inequality. Finally, by applying the Fenchel duality
on the basis of weak orderings, some variational principles for
vector equilibrium problems are investigated.
|
4 |
Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds / Problemas de equilíbrio vetoriais generalizados e algoritmos para desigualdades variacionais em variedades de hadamardBatista, Edvaldo Elias de Almeida 20 October 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:10:49Z
No. of bitstreams: 2
Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2
Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2
Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context.
In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained.
In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context.
In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem. / Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado.
No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano.
No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições.
No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto.
No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
|
Page generated in 0.0372 seconds