• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of magnetic suspension for vibrating bodies

Al-Kasimi, S. M. A. January 1985 (has links)
No description available.
2

The application of linear optimal control theory to the design of active automotive suspensions

Louam, Nadjib January 1990 (has links)
No description available.
3

The ride comfort vs. handling compromise for off-road vehicles

Els, P.S. (Pieter Schalk) 15 July 2008 (has links)
This thesis examines the classic ride comfort vs. handling compromise when designing a vehicle suspension system. A controllable suspension system, that can, through the use of suitable control algorithms, eliminate this compromise, is proposed and implemented. It is a well known fact that if a vehicle suspension system is designed for best ride comfort, then handling performance will suffer and vice versa. This is especially true for the class of vehicle that need to perform well both on- and off-road such as Sports Utility Vehicles (SUV’s) and wheeled military vehicles. These vehicles form the focus of this investigation. The ride comfort and handling of a Land Rover Defender 110 Sports Utility Vehicle is investigated using mathematical modelling and field tests. The full vehicle, non-linear mathematical model, built in MSC ADAMS software, is verified against test data, with favourable correlation between modelled and measured results. The model is subsequently modified to incorporate hydropneumatic springs and used to obtain optimised spring and damper characteristics for ride comfort and handling respectively. Ride comfort is optimised by minimising vertical acceleration when driving in a straight line over a rough, off-road terrain profile. Handling is optimised by minimising the body roll angle through a double lane change manoeuvre. It is found that these optimised results are at opposite corners of the design space, i.e. ride comfort requires a soft suspension while handling requires a stiff suspension. It is shown that the ride comfort vs. handling compromise can only be eliminated by having an active suspension system, or a controllable suspension system that can switch between a soft and a stiff spring, as well as low and high damping. This switching must occur rapidly and automatically without driver intervention. A prototype 4 State Semi-active Suspension System (4S4) is designed, manufactured, tested and modelled mathematically. This system enables switching between low and high damping, as well as between soft and stiff springs in less than 100 milliseconds. A control strategy to switch the suspension system between the “ride” mode and the “handling” mode is proposed, implemented on a test vehicle and evaluated during vehicle tests over various on- and off-road terrains and for various handling manoeuvres. The control strategy is found to be simple and cost effective to implement and works extremely well. Improvements of the order of 50% can be achieved for both ride comfort and handling. AFRIKAANS : In hierdie proefskrif word die klassieke kompromie wat getref moet word tussen ritgemak en hantering, tydens die ontwerp van ‘n voertuig suspensiestelsel ondersoek. ‘n Beheerbare suspensiestelsel, wat die kompromie kan elimineer deur gebruik te maak van toepaslike beheeralgoritmes, word voorgestel en geïmplementeer. Dit is ‘n bekende feit dat, wanneer die karakteristieke van ‘n voertuigsuspensiestelsel ontwerp word vir die beste moontlike ritgemak, die hantering nie na wense is nie, en ook omgekeerd. Dit is veral waar vir ‘n spesifieke kategorie van voertuie, soos veldvoertuie en militêre wielvoertuie, wat oor goeie ritgemak en hantering, beide op paaie en in die veld, moet beskik. Die fokus van die huidige studie val op hierdie kategorie voertuie. Die ritgemak en hantering van ‘n Land Rover Defender 110 veldvoertuig is ondersoek deur gebruik te maak van wiskundige modellering en veldtoetse. Die volvoertuig, nielineêre wiskundige model, soos ontwikkel met behulp van MSC ADAMS sagteware, is geverifieer teen eksperimentele data en goeie korrelasie is verkry. Die model is verander ten einde ‘n hidropneumatiese veer-en-demperstelsel te inkorporeer en verder gebruik om optimale veer- en demperkarakteristieke vir onderskeidelik ritgemak en hantering te verkry. Ritgemak is geoptimeer deur in ‘n reguit lyn oor ‘n rowwe veldterreinprofiel te ry, terwyl hantering geoptimeer is deur ‘n dubbelbaanveranderingsmaneuver uit te voer. Die resultaat is dat die geoptimeerde karakteristieke op die twee uiterstes van die ontwerpsgebied lê. Beste ritgemak benodig ‘n sagte suspensie terwyl beste hantering ‘n harde suspensie benodig. Daar word aangedui dat die ritgemak vs. hantering kompromie slegs elimineer kan word deur gebruik van ‘n aktiewe suspensiestelsel, of ‘n beheerbare suspensiestelsel wat kan skakel tussen ‘n sagte en stywe veer, asook hoë en lae demping. Dié oorskakeling moet vinnig en outomaties geskied sonder enige ingryping van die voertuigbestuurder. ‘n Prototipe 4 Stadium Semi-aktiewe Suspensie Stelsel (4S4) is ontwerp, vervaardig,getoets en wiskundig gemodelleer. Die stelsel skakel tussen hoë en lae demping, asook tussen ‘n stywe en sagte veer binne 100 millisekondes. ‘n Beheerstrategie wat die suspensiestelsel skakel tussen die “ritgemak” en “hantering” modes is voorgestel, op ‘n toetsvoertuig geïmplementeer en evalueer tydens voertuigtoetse oor verskeie pad- en veldry toestande, asook tydens omrol- en hanteringstoetse. Die beheerstrategie is koste-effektief en maklik om te implementeer en werk besonder goed. Verbeterings in die orde van 50% kan behaal word vir beide ritgemak en hantering. / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2011. / Mechanical and Aeronautical Engineering / unrestricted
4

Optimal vehicle suspension characteristics for increased structural fatigue life

Breytenbach, Hendrik Gerhardus Abraham 17 September 2010 (has links)
The designers of heavy, off-road vehicle suspension systems face unique challenges. The ride comfort versus handling compromise in these vehicles has been frequently investigated using mathematical optimisation. Further challenges exist due to the large variations in vehicle sprung mass. The suspension system must provide adequate isolation from road load inputs throughout its payload operating range. This is imperative if good vehicle structural life is to be ensured. A passive suspension system can only provide optimal isolation at a single payload. The designer of such a suspension system must therefore make a compromise between designing for a fully-laden or unladen payload state. This work deals with suspension optimisation for vehicle structural life. The work mainly addresses two questions: 1) What are the suspension characteristics required to ensure optimal isolation of the vehicle structure from road loads? and 2) If such optimal suspension characteristics can be found, how sensitive are they to changes in vehicle payload? The study aims to answer these questions by examining a Land Rover Defender 110 as case study. An experimentally validated mathematical model of the test vehicle is constructed for the use in sensitivity studies. Mathematical optimisation is performed using the model in order to find the suspension characteristics for optimal structural life of the vehicle under consideration. Sensitivity studies are conducted to determine the robustness of the optimal characteristics and their sensitivity to vehicle payload variation. Recommendations are made for suspension characteristic selection for optimal structural life. AFRIKAANS : Ontwerpers van swaar, veldvoertuig suspensie stelsels staar unieke uitdagings in die gesig. Die ritgemak teenoor hantering kompromie in hierdie voertuie is reeds telkemale ondersoek, ook met wiskundige optimering. Verdere uitdagings bestaan as gevolg van die groot veranderinge in geveerde massa by hierdie voertuie. Die suspensiestelsel moet gepaste isolasie van pad insette oor `n wye reeks van bedryfstoestande lewer. Dit is veral belangrik indien daar verseker wil word dat die voertuig goeie struktuurleeftyd het. `n Passiewe suspensiestelsel kan egter slegs optimale isolasie by `n enkele vragtoestand lewer. Die ontwerper van `n passiewe suspensie stelsel moet dus `n kompromie aangaan tussen ontwerp vir `n vol of leë vragtoestand. Hierdie studie handel oor suspensie optimering vir struktuur leeftyd. Die werk spreek hoofsaaklik twee vraagstukke aan: 1) Watter suspensie karakteristieke word benodig om die voertuig struktuur optimaal van padinsette te isoleer? en 2) Indien sulke optimale karakteristieke gevind kan word, wat is hulle sensitiwiteit vir veranderinge in voertuig vrag? Die studie mik om hierdie vraagstukke aan te spreek deur ondersoeke op `n Land Rover Defender 110 toetsvoertuig. `n Eksperimenteel gevalideerde, wiskundige model van die toetsvoertuig word saamgestel met die oog op sensitiwiteitstudies. Wiskundige optimering word met die model uitgevoer om sodoende die suspensie karakteristieke vir optimale struktuurleeftyd vir die betrokke toetsvoertuig te bepaal. Sensitiwiteitsanalises word gedoen om die robuustheid van die optimale karakteristieke, met betrekking tot veranderinge in voertuig vrag, vas te stel. Aanbevelings word gemaak oor die keuse van suspensie karakteristieke vir optimale struktuur leeftyd. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Mechanical and Aeronautical Engineering / unrestricted
5

Prilog kinematičkoj sintezi mehanizama u sistemima oslanjanja motornih vozila / A contribution to the kinematical synthesis of motor vehicle suspension mechanisms

Poznanović Nenad 19 September 2016 (has links)
<p>U radu je razmatran problem projektovanja polužnih mehanizama koji se primenjuju u sistemima elastičnog oslanjanja drumskih vozila.<br />Polužni mehanizmi za vođenje točka imaju zadatak da ostvare pokretnu vezu točka sa nosećim strukturama vozila koja omogućava približno vertikalno relativno kretanje točka u odnosu na telo vozila i obezbeđuje prijem aktivnih i reaktivnih sila i momenata nastalih u interakciji točka sa podlogom.<br />Definisana je jednostavna, univerzalna metoda za optimalnu sintezu mehanizama u sistemima oslanjanja vozila, koja ne zahteva pripreme i prilagođavanje različitim specifičnim uslovima i zahtevima sinteze mehanizama u okvirima ove tematike. Osnovne karakteristike predloženog postupka su: tačnost i praktična primenljivost usvojenog metodološkog prilaza; jednostavnost i univerzalnost celokupnog postupka sinteze, osigurana usvajanjem algoritma diferencijalne evolucije kao optimizacione metode; robusnost metoda i odsustvo potrebe za pripremom i prilagođavanjem različitim postavkama problema sinteze; implementacijom postupka u okruženju opšteg matematičkog programa Mathcad omogućeno je da svi elementi proračuna (ulazni podaci, jednačine, komentari, skice, dijagramski prikazi i numerički rezultati) budu objedinjeni na jednom mestu.Primena razvijenog postupka sinteze demonstrirana je na karakterističnim problemima optimalne sinteze mehanizama za oslanjanje vozila. Problemi su postavljeni tako da je zadato kretanje nosača točka - generisano je mehanizmom poznate konfiguracije. U takvoj postavci problema, u kojoj se pouzdano zna da se zadato kretanje nosača točka može ostvariti, izvedeni su numerički eksperimenti sa višestrukim ponavljanjem postupka sinteze uz variranje početnih vrednosti nepoznatih konstrukcionih parametara slučajnim izborom iz širokih intervala. Dobijeni rezultati su pokazali da je u svim slučajevima razvijeni postupak sinteze rezultovao mehanizmom koji ostvaruje zadato kretanje uz odstupanja znatno ispod praga fizičke značajnosti.</p> / <p>This paper is focused on the design of lever mechanisms used in systems for elastic vehicle suspension.<br />The lever mechanisms used for wheel guidance are tasked with accomplishing a mobile connection between the wheel and the support structure that allows the wheel a roughly vertical motion relative to the vehicle body and receives the active and reactive forces and torque originating from the interaction between the wheel and the ground.<br />A simple, universal method for the optimal synthesis of mechanisms used in vehicle support systems is defined, one that doesn&rsquo;t require extensive preparation or adjustments for specific conditions. The basic characteristics of the proposed method are: accuracy and practical applicability of the method; simplicity and universality of the whole synthesis process, insured by adopting the differential evolution algorythm for the optimization method; robustness of the method and the lack of need for preparation and adjustments to the different synthesis peoblems; by implementing the method in the universal mathematical program Mathcad, the calculation elements (input, equations, comments, sketches, diagrams and numerical resuts) are all presented and accessible in one place.<br />The application of the developed method is demonstrated on charachetirstic problems of the optimal synthesis of vehicle support mechanisms. The problems are set up so that the motion of the wheel support is known &ndash; it is generated by a mechanism with a known configuration. In this kind of setting, where one is sure the given motion of the wheel support can be accomplished, a series of numerical tests was performed with multiple repetitions of the synthesis method using different initial values of the unknown construction parameters randomly chosen from wide intervals. The results of these experiments have shown that for each set of initial values, the developed method resulted in a mechanism that accomplished the required motion with very slight deviations, too small to be of any practical importance.</p>
6

Development of a Semi-active Intelligent Suspension System for Heavy Vehicles

Nima, Eslaminasab January 2008 (has links)
With the new advancements in the vibration control strategies and controllable actuator manufacturing, the semi-active actuators (dampers) are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technologies can be divided into two main groups. The first uses controllable electromagnetic valves. The second uses magnetorheological (MR) fluid to control the damping characteristics of the system. Leading automotive companies such as General Motors and Volvo have started to use semi-active actuators in the suspension systems of high-end automobiles, such as the Cadillac Seville and Corvette, to improve the handling and ride performance in the vehicle. But much more research and development is needed in design, fabrication, and control of semi-active suspension systems and many challenges must be overcome in this area. Particularly in the area of heavy vehicle systems, such as light armored vehicles, little related research has been done, and there exists no commercially available controllable damper suitable for the relatively high force and large displacement requirements of such application. As the first response to these requirements, this thesis describes the design and modeling of an in-house semi-active twin-tube shock absorber with an internal variable solenoid-actuated valve. A full-scale semi-active damper prototype is developed and the shock absorber is tested to produce the required forcing range. The test results are compared with results of the developed mathematical model. To gain a better understanding of the semi-active suspension controlled systems and evaluate the performance of those systems, using perturbation techniques this thesis provides a detailed nonlinear analysis of the semi-active systems and establishes the issue of nonlinearity in on-off semi-active controlled systems. Despite different semi-active control methods and the type of actuators used in a semi-active controlled system, one important practical aspect of all hydro-mechanical computer controlled systems is the response-time. The longest response-time is usually introduced by the actuator –in this case, controllable actuator – in the system. This study investigates the effect of response-time in a semi-active controlled suspension system using semi-active dampers. Numerical simulations and analytical techniques are deployed to investigate the issue. The performance of the system due to the response-time is then analyzed and discussed. Since the introduction of the semi-active control strategy, the challenge was to develop methods to effectively use the capabilities of semi-active devices. In this thesis, two semi-active control strategies are proposed. The first controller to be proposed is a new hybrid semi-active control strategy based on the conventional Rakheja-Sankar (R-S) semi-active control to provide better ride-handling quality for vehicle suspension systems as well as industrial vibration isolators. To demonstrate the effectiveness of this new strategy, the analytical method of averaging and the numerical analysis method are deployed. In addition, a one-degree-of-freedom test bed equipped with a semi-active magnetorheological (MR) damper is developed. The tests are performed using the MATLAB XPC-target to guarantee the real-time implementation of the control algorithm. The second controller is an intelligent fuzzy logic controller system to optimize the suspension performance. The results from this intelligent system are compared with those of several renowned suspension control methods such as Skyhook. It is shown that the proposed controller can enhance concurrently the vehicle handling and ride comfort, while consuming less energy than existing control methodologies. The key goal of this thesis is to employ the existing knowledge of the semi-active systems together with the new ideas to develop a semi-active suspension system. At the same time, development of an experimental simulation system for real-time control of an experimental test bed is considered. To achieve its goals and objectives, this research study combines and utilizes the numerical simulations and analytical methods, as well as lab-based experimental works. The challenge in this research study is to identify practical and industrial problems and develop proper solutions to those problems using viable scientific approaches.
7

Development of a Semi-active Intelligent Suspension System for Heavy Vehicles

Nima, Eslaminasab January 2008 (has links)
With the new advancements in the vibration control strategies and controllable actuator manufacturing, the semi-active actuators (dampers) are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technologies can be divided into two main groups. The first uses controllable electromagnetic valves. The second uses magnetorheological (MR) fluid to control the damping characteristics of the system. Leading automotive companies such as General Motors and Volvo have started to use semi-active actuators in the suspension systems of high-end automobiles, such as the Cadillac Seville and Corvette, to improve the handling and ride performance in the vehicle. But much more research and development is needed in design, fabrication, and control of semi-active suspension systems and many challenges must be overcome in this area. Particularly in the area of heavy vehicle systems, such as light armored vehicles, little related research has been done, and there exists no commercially available controllable damper suitable for the relatively high force and large displacement requirements of such application. As the first response to these requirements, this thesis describes the design and modeling of an in-house semi-active twin-tube shock absorber with an internal variable solenoid-actuated valve. A full-scale semi-active damper prototype is developed and the shock absorber is tested to produce the required forcing range. The test results are compared with results of the developed mathematical model. To gain a better understanding of the semi-active suspension controlled systems and evaluate the performance of those systems, using perturbation techniques this thesis provides a detailed nonlinear analysis of the semi-active systems and establishes the issue of nonlinearity in on-off semi-active controlled systems. Despite different semi-active control methods and the type of actuators used in a semi-active controlled system, one important practical aspect of all hydro-mechanical computer controlled systems is the response-time. The longest response-time is usually introduced by the actuator –in this case, controllable actuator – in the system. This study investigates the effect of response-time in a semi-active controlled suspension system using semi-active dampers. Numerical simulations and analytical techniques are deployed to investigate the issue. The performance of the system due to the response-time is then analyzed and discussed. Since the introduction of the semi-active control strategy, the challenge was to develop methods to effectively use the capabilities of semi-active devices. In this thesis, two semi-active control strategies are proposed. The first controller to be proposed is a new hybrid semi-active control strategy based on the conventional Rakheja-Sankar (R-S) semi-active control to provide better ride-handling quality for vehicle suspension systems as well as industrial vibration isolators. To demonstrate the effectiveness of this new strategy, the analytical method of averaging and the numerical analysis method are deployed. In addition, a one-degree-of-freedom test bed equipped with a semi-active magnetorheological (MR) damper is developed. The tests are performed using the MATLAB XPC-target to guarantee the real-time implementation of the control algorithm. The second controller is an intelligent fuzzy logic controller system to optimize the suspension performance. The results from this intelligent system are compared with those of several renowned suspension control methods such as Skyhook. It is shown that the proposed controller can enhance concurrently the vehicle handling and ride comfort, while consuming less energy than existing control methodologies. The key goal of this thesis is to employ the existing knowledge of the semi-active systems together with the new ideas to develop a semi-active suspension system. At the same time, development of an experimental simulation system for real-time control of an experimental test bed is considered. To achieve its goals and objectives, this research study combines and utilizes the numerical simulations and analytical methods, as well as lab-based experimental works. The challenge in this research study is to identify practical and industrial problems and develop proper solutions to those problems using viable scientific approaches.
8

Intelligent control of tracked vehicle suspension

Kotb Ata, Wael Galal Mohamed January 2014 (has links)
Vibrations caused by rough road excitations influence tracked vehicle dynamic performance. Good capabilities of such vehicles like high mobility, manoeuvrability and comfort are guaranteed by optimal suspension systems. The suspension systems of tracked vehicles are exposed to extreme operating conditions. This creates a conflict between ride comfort and handling that is even greater than the conflict between ride comfort and handling for general road vehicles. Tracked vehicles must be able to traverse not only rough roads but also smooth terrains. The challenges in developing an optimized suspension system for tracked vehicles include the high and changeable damping forces required for tracked vehicles crossing rough terrains. The use of active or semi-active suspension systems overcomes the limitations inherent in the conventional passive suspension. However, active suspension systems are expensive, complicated to design and have high power demand. Thus, semi-active suspension systems have emerged as a good compromise between active and passive suspension system. There is considerable current research on the applications of magnetorheological (MR) fluid dampers for semi-active suspensions of executive brand of some cars. However, there is very little research on semi-active devices for tracked vehicle suspension. In fact, currently, there is no commercially available large scale MR dampers in the market that produce the high damping force to suit such applications. In response to these requirements, this research proposes a novel semi-active tracked vehicle suspension system that uses MR dampers to improve the ride comfort and handling characteristics of tracked vehicles. It also assesses the dynamics of the new suspension with various semi-active control methods. This study is conducted in four phases. The first phase provides a numerical investigation on the dynamic performance of a seven-degrees-of-freedom (7-DOF) passive suspension model of the armour personnel carrier (APC) M113 tracked vehicle. The numerical investigation considers the influence of variation of five suspension design parameters on the vehicle dynamic performance. These parameters include number, locations of hydraulic shock absorber, damping coefficient, suspension and wheel stiffnesses. The results indicate that the optimal suspension performance is attained by using two or three dampers. The best locations for these dampers are at the extreme road wheels i.e. the first, second and last road wheel stations. Moreover, the vehicle performance is reduced when the damping coefficient is increased. Additionally, low suspension stiffness offers better vehicle ride while high wheel stiffness degrades the vehicle performance. These results identify the limitations inherent in the conventional passive suspension. For the second phase, the dynamic characteristics of the hydraulic, hydro-gas and MR dampers are experimentally measured and fitted using the Chebyshev orthogonal functions to produce the restoring force surfaces for each damper, which are compared. On one hand, the restoring force surfaces of the hydraulic and hydro-gas dampers show fixed properties at specified frequencies. On the other hand, the restoring force surfaces of the MR dampers show properties that can be controlled at the same specified frequencies by the variation of the applied current levels. Thus, the potential and the effectiveness of the controllable properties of MR dampers for semi-active vibration control is demonstrated. Also, in this phase, the best set of parameters to use in the modified Bouc-Wen model to characterise the MR dampers, has been derived. The third phase of the project is also experimentally based. A new and novel test rig which represents the 7-DOF scaled suspension model of the tracked vehicle is designed and fabricated. The primary purpose of the test rig is to evaluate the performance of the proposed suspension with MR dampers. Furthermore, experiments are conducted on the test rig to evaluate some semi-active control methods and their effectiveness in reducing suspension vibration. The results show that the use of two or three MR dampers at the extreme wheels offers optimal suspension performance. This confirms the numerical results that are derived from the full scale passive suspension system with hydraulic dampers. The experimental results also show that skyhook control and hybrid control (which combines groundhook and skyhook controls) of the semi-active suspension are more effective in reducing the road-induced vibration and improving the suspension dynamic behaviours. Also, validations of the predicted responses of the semi-active scaled MR suspension model with the measured responses have been presented. The fourth and final phase provides a numerical simulation on the development and evaluation of the semi-active control methods for a full scale tracked vehicle suspension with MR dampers using the validated suspension model. Three semi-active control strategies are proposed. The first two controllers are the skyhook and hybrid controls which provide better suspension performance. In addition, the third controller, which is an intelligent fuzzy-hybrid control system, is used to optimize the suspension performance. The results from this intelligent system are compared with the two traditional control methods (skyhook and hybrid controls) under bump, sinusoidal and random excitations. It is shown that the proposed controller can enhance simultaneously the vehicle ride and handling characteristics.
9

Energy Harvesting Hydraulically Interconnected Shock Absorber: Modeling, Simulation and Prototype Validation

Deshmukh, Nishant Mahesh 09 July 2023 (has links)
The conventional car suspension system uses isolated shock absorbers that are only capable of dissipating energy in the form of heat. Each shock absorber in a hydraulic interconnected suspension is connected by hydraulic circuits, allowing the electrified hydraulic fluid to be used to counteract undesirable body motion and enhance dynamic performance as a whole. An established idea with good potential for managing body rolling and separating the warp mode from other dynamic modes is the hydraulic interconnected suspension. While certain active or semi-active suspension technologies enable the shock absorbers to compensate for the effects of the road disturbances using external power input, hydraulic linked suspension is still passive and lacks adaptivity. In order to adjust the suspension's damping properties to rapidly changing road conditions, active suspensions, like electromagnetic shock absorbers, utilize the magnetofluid's variable viscosity. In some circumstances, the energy requirement of an active suspension might amount to kilowatts, which lowers the vehicle's fuel efficiency. This research proposes a novel energy-harvesting hydraulically interconnected shock absorber (EH-HISA) system to find a balanced solution to dynamic performance and energy efficiency by incorporating energy harvesting ability to a passive hydraulically interconnected suspension. Improved energy efficiency and vehicle dynamics performance are provided by the features which combine energy harvesting with hydraulic interconnection. AMESim is used to build a single diagonal hydraulic circuit model, which is then validated in a bench test. The theoretical model's validity was established by the bench test results, and the model was then applied to estimate system performance. To verify the effectiveness of the entire system design, a full car model outfitted with EH-HISA is created. For model simulation, various dynamic input scenarios—including sinusoidal input and double lane change tests—are applied. The EH-HISA achieves average lateral acceleration improvements of 38% over traditional suspensions and 11% compared to a prior design (EHHIS proposed by Chen et al.) and average energy harvesting ability improvements of 133 % while maintaining acceptable anti-rolling dynamics in the double lane change test. The EH-HISA also improves the anti-rolling ability by 30 % as compared to traditional suspensions. The power generated is found to reach maximum of 210 W at 2 Hz and 20 mm sinusoidal input. Bench tests are performed on the EH-HISA prototype to validate the simulation results. Damping force and energy harvesting experimental data is measured and compared with the simulation results to validate the effectiveness of the system. / Master of Science / The vehicle industry has always sought improved road handling dynamics and riding comfort. The vehicle body may move in a variety of ways, including roll, pitch, and bounce; each of these motions can endanger passengers' safety and lead to passenger fatigue. Oil shock absorbers that are isolated from the rest of the vehicle's suspension system can only dissipate energy by forcing oil via dampening valves. A hydraulic interconnected suspension can connect each shock absorber using hydraulic circuits so that the energized hydraulic fluid can be used to reduce unwanted body motion and enhance the overall riding experience. A tried-and-true idea, the hydraulic interconnected suspension (HIS), has shown promising results in stabilizing the vehicle body on unsteady roads. While active suspensions, like electro-magnetic shock absorbers, can employ an external power source to compel them to adjust to rapidly changing road conditions, hydraulic linked suspension is still passive and unadaptive. In some circumstances, the energy requirement of an active suspension might amount to kilowatts, which lowers the vehicle's fuel efficiency. Additionally, there is always a chance that a system that is actively receiving power will malfunction as a result of a power outage. This research offers a new type of energy-harvesting hydraulically interconnected shock absorber (EH-HISA) system to achieve a balanced solution to dynamic performance and energy efficiency. The combined energy-harvesting and HIS system provide improved energy efficiency as well as vehicle dynamics performance. Each system is composed of two distinct diagonal hydraulic circuits which interconnect the shock absorbers of the diagonal wheels in a vehicle. AMESim is used to build a single diagonal hydraulic circuit model, which is then validated in experiments, as a starting point for investigating the effectiveness of the overall system. The theoretical model's validity was established by the outcomes of the bench tests, and the model was then utilized to predict system performance. A full car model is created based on the tested single diagonal hydraulic circuit model to assess the performance of the entire system architecture. Different road condition scenarios are used for model simulation, which includes sinusoidal input and double lane change test. The EH-HISA achieves average lateral acceleration improvements of 38% over traditional suspensions and 11% compared to a prior design (EHHIS proposed by Chen et al.) and average energy harvesting ability improvements of 133 % while maintaining acceptable anti-rolling dynamics in the double lane change test. The EH-HISA also improves the anti-rolling ability by 30 % as compared to traditional suspensions. The power generated is found to reach maximum of 210 W at 2 Hz and 20 mm sinusoidal input. Bench tests are performed on the EH-HISA prototype to validate the simulation results. Damping force and energy harvesting experimental data is measured and compared with the simulation results to validate the effectiveness of the system.
10

Transient Motion Control of Passive and Semiactive Damping for Vehicle Suspensions

Carter, Angela K. 10 August 1998 (has links)
This research will compare the transient response characteristics of a four-degree-of-freedom, roll-plane model, representing a class 8 truck, using passive and semiactive dampers. The semiactive damper control policies that are examined include the previously developed policies of on-off skyhook, continuous skyhook, and on-off groundhook control, along with a newly developed method of fuzzy logic semiactive control. The model input will include body forces and torques, as well as transient displacements at the tires. The model outputs include the vehicle body heave and roll displacements, the vertical displacement of the tire (wheel hop) and the vertical acceleration of the vehicle body. For each output, the maximum peak-to-peak and RMS values of the response are examined. The results of the study show that semiactive dampers have minimal effect on improving the vehicle body and tire transients due to forces or torques applied to the body, as compared to passive dampers. For road inputs, however, semiactive dampers are able to provide a more favorable compromise between the body and axle transient dynamics, when compared to passive dampers. The fuzzy logic semiactive control policy that is proposed in this research is better able to balance the body and axle dynamics than the conventional semiactive damping control policies that are investigated. Further research on the application of fuzzy logic semiactive control concepts is suggested, in order to fully investigate the potential of such control schemes for vehicle suspensions. / Master of Science

Page generated in 0.0831 seconds