• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 590
  • 64
  • 1
  • Tagged with
  • 656
  • 656
  • 651
  • 52
  • 49
  • 46
  • 43
  • 42
  • 40
  • 38
  • 37
  • 36
  • 34
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Transmission DynamicsModelling : Gear Whine Simulation Using AVL Excite

Mehdi Pour, Reza January 2018 (has links)
Nowadays, increasing pressure from legislation and customer demands in the automotive industry are forcing manufacturers to produce greener vehicles with lower emissions and fuel consumption.As a result, electrified and hybrid vehicles are a growing popular alternative to traditional internal combustion engines (ICE). The noise from an electric vehicle comes mainly from contact between tyres and road, wind resistance and driveline. The noise emitted from the driveline is for the mostpart related to the gearbox. When developing a driveline, it is a factor of importance to estimate the noise radiating from the gearbox to achieve an acceptable design.Gears are used extensively in the driveline of electric vehicles. As the gears are in mesh, a main intrusive concern is known as gear whine noise. Gear whine noise is an undesired vibroacoustic phenomenon and is likely to originate through the gear contacts and be transferred through themechanical components to the housing where the vibrations are converted into airborne and structure-borne noise. The gear whine noise originates primarily from the excitation coming from transmission error (TE). Transmission error is defined as the difference between the ideal smoothtransfer of motion of a gear and what is in practice due to lack of smoothness.The main objective of this study is to simulate the vibrations generated by the gear whine noise in an electric powertrain line developed by AVL Vicura. The electric transmission used in this study provides only a fixed overall gear ratio, i.e. 9.59, under all operation conditions. It is assumed thatthe system is excited only by the transmission error and the mesh stiffness of the gear contacts. In order to perform NVH analysis under different operating conditions, a multibody dynamics model according to the AVL Excite program has been developed. The dynamic simulations are thencompared with previous experimental measurements provided by AVL Vicura.Two validation criteria have been used to analyse the dynamic behaviour of the AVL Excite model: signal processing using the FFT method and comparison with the experimental measurements.The results from the AVL Excite model show that the FFT criterion is quite successful and all excitation frequencies are properly observed in FFT plots. Nevertheless, when it comes to the second criterion, as long as not all dynamic parameters of the system such as damping or stiffnesscoefficients are provided with certainty in the model, it is too difficult to investigate the accuracy of the AVL Excite model. Another investigation is a numerical design study to analyses how the damping coefficients influence the response. After reducing the damping parameters, the results show that the housing and bearings have the highest influence on the response. If more acceptable results are desired,future studies must be concentrated on these to obtain more acceptable damping values. / För närvarande tvingar ökat tryck från lagstiftning och kundkrav inom bilindustrin tillverkarna attproducera grönare fordon med lägre utsläpp och bränsleförbrukning. Som ett resultat ärelektrifierade och hybridfordon ett växande populärt alternativ till traditionellaförbränningsmotorer (ICE). Bullret från ett elfordon kommer främst från kontakten mellan däckoch väg, vindmotstånd och drivlinan. Bullret från drivlinan är i huvudsak relaterat till växellådan.Vid utveckling av en drivlina är det av betydelse att uppskatta bullret från växellådan för att uppnåen acceptabel design.Utväxlingar används i stor utsträckning i elfordons drivlina. Eftersom kugghjulen är i kontaktuppstår ett huvudproblem som är känt som ett vinande ljud från kugghjulskontakten.Kugghjulsljud är ett oönskat vibro-akustiskt fenomen och uppstår sannolikt på grund avkugghjulkontakterna och överförs via de mekaniska komponenterna till växellådshuset därvibrationerna omvandlas till luftburet och strukturburet ljud. Kugghjulsljudet härstammarhuvudsakligen från exciteringen som kommer från transmissionsfel (TE) i kugghjulskontakten.Överföringsfelet definieras som skillnaden mellan den ideala smidiga rörelseöverföringen hoskugghjulen och rörelsen som sker i verkligheten på grund av ojämnheter.Huvudsyftet med denna studie är att simulera vibrationerna som genereras avkugghjulskontakterna i en elektrisk drivlina utvecklad av AVL Vicura. Den elektriska drivlinan somanvänds i denna studie har endast ett fast utväxlingsförhållande, dvs 9,59, för alladriftsförhållanden. Det antas att systemet är exciterat endast av överföringsfelet och kugghjulensstyvhet i kuggkontakterna. För att kunna utföra NVH-analys under olika driftsförhållanden har enstelkroppsdynamikmodell utvecklats med hjälp av programmet AVL Excite. De dynamiskasimuleringarna jämförs sedan med tidigare experimentella mätningar som tillhandahålls av AVLVicura.Två valideringskriterier har använts för att analysera det dynamiska beteendet hos AVL Excitemodellen:signalbehandling med FFT-metoden och jämförelse med experimentella mätningar.Resultaten från AVL Excite-modellen visar att FFT-kriteriet är ganska framgångsrikt och allaexcitationsfrekvenser observeras korrekt i FFT-diagrammen. Men när det gäller det andra kriteriet,så länge som inte alla dynamiska parametrar i systemet, såsom dämpnings- ellerstyvhetskoefficienter, är tillförlitliga i modellen, är det för svårt att undersöka exaktheten hos AVLExcite-modellen.En annan undersökning som utförts är en numerisk designstudie för att analysera hurdämpningskoefficienterna påverkar responsen. Efter minskning av dämpningsparametrarna visarresultaten att växellådshus och lager har störst inflytande på resultatet. Om mer acceptabla resultatär önskvärda måste framtida studier koncentreras på dessa parametrar för att uppnå mer acceptabladämpningsvärden.
482

Control Aspects of Complex Hydromechanical Transmissions : with a Focus on Displacement Control

Larsson, L. Viktor January 2017 (has links)
This thesis deals with control aspects of complex hydromechanical transmissions. The overall purpose is to increase the knowledge of important aspects to consider during the development of hydromechanical transmissions to ensure transmission functionality. These include ways of evaluating control strategies in early design stages as well as dynamic properties and control aspects of displacement controllers, which are key components in these systems. Fuel prices and environmental concerns are factors that drive research on propulsion in heavy construction machinery. Hydromechanical transmissions are strong competitors to conventional torque-converter transmissions used in this application today. They offer high efficiency and wide speed/torque conversion ranges, and may easily be converted to hybrids that allow further fuel savings through energy recuperation. One challenge with hydromechanical transmissions is that they offer many different configurations, which in turn makes it important to enable evaluation of control aspects in early design stages. In this thesis, hardware-in-the-loop simulations, which blend hardware tests and standard software-based simulations, are considered to be a suitable method. A multiple-mode transmission applied to a mid-sized construction machine is modelled and evaluated in offline simulations as well as in hardware-in-the-loopsimulations. Hydromechanical transmissions rely on efficient variable pumps/motors with fast, accurate displacement controllers. This thesis studies the dynamic behaviour of the displacement controller in swash-plate axial-piston pumps/motors. A novel control approach in which the displacement is measured with an external sensor is proposed. Performance and limitations of the approach are tested in simulations and in experiments. The experiments showed a significantly improved performance with a controller that is slightly more advanced than a standard proportional controller. The implementation of the controller allows simple tuning and good predictability of the displacement response.
483

Evaluation of Fuel Saving for an Airline

Berglund, Tobias January 2008 (has links)
<p>A study of which methods and measures that can be used to reduce fuel consumption and harmful discharges in an airline.</p><p>The study begins with an investigation containing calculations of the differences between estimated fuel consumption calculated by a computer program called Skytrack and actual fuel consumption. Results from this study allows synchronization between actual consumption with calculated consumption. In addition to this methods and configurations to reduce weight and thus weight onboard aircrafts e.g. carpet exchange, lightweight trolleys and water reduction has been created and analysed.</p><p>To bring the thesis to an end, the author has investigated other methods and configurations which TUIfly Nordic is implementing for fuel conservation.</p><p>The thesis results in several conceivable areas for fuel conservation with calculated savings of 830 000 EUR which for the moment is implemented in TUIFly Nordic.</p>
484

On Derailment-Worthiness in Rail Vehicle Design : Analysis of vehicle features influencing derailment processes and consequences

Brabie, Dan January 2007 (has links)
This thesis aims at systematically studying the possibilities of minimizing devastating consequences of high-speed rail vehicle derailments by appropriate measures and features in the train design including the running gear. Firstly, an empirical database is established containing as much relevant information as possible of past incidents and accidents that have occurred at substantial running speeds due to mechanical failure close to the interface between the running gear and the track. Other causes that ultimately brought the train in a derailed condition are also covered. Although various accidental circumstances make each derailment a unique event, certain patterns appear to emerge which lead to several critical vehicle parameters capable of influencing the outcome of a derailment or preventing a derailment to occur. Secondly, the possibility of preventing wheel climbing derailments after an axle journal failure is studied by implementing mechanical restrictions between wheelsets and bogie frame. In this respect, a multi body system (MBS) computer model is developed to account for such an axle failure condition, which is successfully validated on the basis of two authentic passenger car events. In order to study the overall post-derailment vehicle behaviour, in particular the wheelsets’ vertical motion and lateral deviation on sleepers, a comprehensive MBS post-derailment module is developed and implemented in the commercially available software GENSYS. The model detects wheel-sleeper impact conditions and applies valid force resultants calculated through linear interpolation based on a pre-defined look-up table. The table was constructed through exhaustive finite element (FE) wheel to concrete sleeper impact simulations utilising the commercially available software LS-DYNA. The MBS post-derailment module has been validated successfully in several stages, including a correct prediction of the derailing wheelset’s trajectory over ten consecutive sleepers in comparison with an authentic passenger vehicle derailment event. An extensive simulation analysis on the feasibility of utilizing alternative substitute guidance mechanisms attached to the running gear on rail vehicles is presented, as means of minimizing the lateral deviation. Three low-reaching guidance mechanisms attached onto the running gear (bogie frame, brake disc and axle journal box) are analysed in terms of geometrical parameters for a successful engagement with the rail in order to prevent large lateral deviations after twelve different derailment scenarios. Three conventional coupled passenger trailing cars are investigated in terms of lateral deviation and vehicle overturning tendency after derailments on tangent and curved track. This is performed as a function of various vehicle design features and parameters such as: maximum centre coupler yaw angle, carbody height of centre of gravity, coupler height and additional running gear features. In a similar manner, the articulated train concept is investigated in terms of the post-derailment vehicle behaviour as a function of different inter-carbody damper characteristics and running gear features. / QC 20100701
485

Aeroelastic Concepts for Flexible Aircraft Structures

Heinze, Sebastian January 2007 (has links)
In this thesis, aeroelastic concepts for increased aircraft performance are developed and evaluated. Active aeroelastic concepts are in focus as well as robust analysis concepts aiming at efficient analysis using numerical models with uncertain or varying model parameters. The thesis presents different approaches for exploitation of fluid-structure interaction of active aeroelastic structures. First, a high aspect ratio wing in wind tunnel testing conditions is considered. The wing was developed within the European research project \textit{Active Aeroelastic Aircraft Structures} and used to demonstrate how structural flexibility can be exploited by using multiple control surfaces such that the deformed wing shape gives minimum drag for different flight conditions. Two different drag minimization studies are presented, one aiming at reduced induced drag based on numerical optimization techniques, another one aiming at reduced measured total drag using real-time optimization in the wind tunnel experiment. The same wing is also used for demonstration of an active concept for gust load alleviation using a piezoelectric tab. In all studies on the high aspect ratio wing, it is demonstrated that structural flexibility can be exploited to increase aircraft performance. Other studies in this thesis investigate the applicability of robust control tools for flutter analysis considering model uncertainty and variation. First, different techniques for taking large structural variations into account are evaluated. Next, a high-fidelity numerical model of an aircraft with a variable amount of fuel is considered, and robust analysis is applied to find the worst-case fuel configuration. Finally, a study investigating the influence of uncertain external stores aerodynamics is presented. Overall, the robust approach is shown to be capable of treating large structural variations as well as modeling uncertainties to compute worst-case configurations and flutter boundaries. / QC 20100713
486

Dynamic Vehicle-Track Interaction of European Standard Freight Wagons with Link Suspension

Jönsson, Per-Anders January 2007 (has links)
The link suspension is the most prevailing suspension system for freight wagons in Central and Western Europe. The system design is simple and has existed for more than 100 years. However, still its characteristics are not fully understood. This thesis investigates the dynamic performance of freight wagons and comprises five parts: In the first part a review of freight wagon running gear is made. The different suspension systems are described and their advantages and disadvantages are discussed. The second part focuses on the lateral force-displacement characteristics of the link suspension. Results from stationary measurements on freight wagons and laboratory tests of the link suspension characteristics are presented. To improve the understanding of various mechanisms and phenomena in link suspension systems, a simulation model is developed. In the third part the multibody dynamic simulation model is discussed. The previous freight wagon model developed at KTH is able to explain many of the phenomena observed in tests. In some cases, however, simulated and measured running behaviour differ. Therefore, a new simulation model is presented and validated against on-track test results. The performance of standard two-axle freight wagons is investigated. The most important parameters for the running behaviour of the vehicle are the suspension characteristics. The variation in characteristics between different wagons is large due to geometrical tolerances of the components, wear, corrosion, moisture or other lubrication. The influence of the variation in suspension characteristics and other parameters on the behaviour of the wagon, on tangent track and in curves, is discussed. Finally, suggestions for improvements of the system are made. A majority of the traffic related track deterioration cost originates from freight traffic. With heavier and faster freight trains the maintenance cost is likely to increase. In the fourth part the possibility to improve ride comfort and reduce track forces on standard freight wagons with link suspension is discussed. The variation of characteristics in link suspension running gear is considerable and unfavourable conditions leading to hunting are likely to occur. Supported by on-track tests and multibody dynamic simulations, it is concluded that the running behaviour of two-axled wagons with UIC double-link suspension as well as wagons with link suspension bogies (G-type) can be improved when the running gear are equipped with supplementary hydraulic dampers. Finally in the fifth part the effects of different types of running gear and operational conditions on the track deterioration marginal cost — in terms of settlement in the ballast, component fatigue, wear and RCF — is investigated. Considerable differences in track deterioration cost per produced ton-km for the different types of running gear are observed. Axle load is an important parameter for settlement and component fatigue. Also the height of centre of gravity has significant influence on track deterioration, especially on track sections with high cant deficiency or cant excess. / QC 20100802
487

Difficulties to Read and Write Under Lateral Vibration Exposure : Contextual Studies Of Train Passengers Ride Comfort

Sundström, Jerker January 2006 (has links)
Many people use the train both as a daily means of transport as well as a working place to carry out activities such as reading or writing. There are, however, several important factors in this environment that will hamper good performance of such activities. Some of the main sources of disturbance, apart form other train passengers, are noise and vibrations generated from the train itself. Although there are standards available for evaluation of ride comfort in vehicles none of them consider the effects that vibrations have on particular passengers' activities. To address these issues, three different studies were conducted to investigate how low frequency lateral vibrations influence the passengers' ability to read and write onboard trains. The first study was conducted on three types of Inter-Regional trains during normal service and included both a questionnaire survey and vibration measurements. Two proceeding laboratory studies were conducted in a train mock-up where the perceived difficulty of reading and writing was evaluated for different frequencies and amplitudes. To model and clarify how vibrations influence the processes of reading and writing the fundamentals of Human Activity Theory was used as a framework in this thesis. In the field study about 80% of the passengers were found to be reading at some point during the journey, 25% were writing by hand, and 14% worked with portable computers. The passengers applied a wide range of seated postures for their different activities. According to the standardised measurements, even the trains running on poor tracks showed acceptable levels of vibration. However, when the passengers performed a short written test, over 60 % reported to be disturbed or affected by vibrations and noise in the train. In the laboratory studies it was found that the difficulty in reading and writing is strongly influenced by both vibration frequency and acceleration amplitude. The vibration spectra of real trains were found to correspond well to the frequency characteristics of the rated difficulty. It was also observed that moderate levels of difficulty begin at fairly low vibration levels. Contextual parameters like sitting posture and type of activity also showed strong influence on how vibrations cause difficulty.
488

Fuel Efficiency in AWD-system

Fredriksson, Robert, Trkulja, Milovan January 2008 (has links)
This degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates coordinates and angles on a propeller shaft and to investigate the possibilities to put together a simplified formula that calculates the natural frequencies on a propeller shaft. The main parts of this report are a compilation of the theory about AWD and mostly about the parts on the propeller shaft, and also a description of the developed computer program called Propeller Shaft Calculator. This report doesn’t concern power losses in the different joints because there were no such general equations to be found. The most common way to calculate the power losses inside a joint is to do tests were the power loss is measured at different angles, torque and speed and then use that data to put together an approximated equation. Most of the work on this project has been on theory studies and on programming. The main result of the project is the program Propeller Shaft Calculator. Propeller Shaft Calculator is a program that is designed in Microsoft Excel. All the menus are programmed in the visual basic editor in Excel. The program is supposed to be used as a help while designing new propeller shafts. Propeller Shaft Calculator can calculate all the coordinates, lengths, angles and directions on a propeller shaft. It also calculates natural frequencies, plunge, estimated power loss on the second shaft and angles in the joints. In the program you can choose to do calculations on four different configurations of propeller shafts but can quite easy upgrade the program with more choices. Basically the program works like this: First you choose the right propeller shaft in the main menu. Then you fill out the indata sheet with coordinates, lengths, material data and so on. As you type in the input data the output data will appear in the out-data sheet next to the in-data. Every propeller shaft has also a calculations sheet were more detailed calculations can be found. The program also has a built in help function and a warning function that lights a warning sign next to the values if they are outside the limits.
489

Fuel Efficiency in AWD-system

Fredriksson, Robert, Trkulja, Milovan January 2008 (has links)
<p>This degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates</p><p>coordinates and angles on a propeller shaft and to investigate the possibilities to put together a simplified formula that calculates the natural frequencies on a propeller shaft.</p><p>The main parts of this report are a compilation of the theory about AWD and mostly about the parts on the propeller shaft, and also a description of the developed computer program called Propeller Shaft Calculator. This report doesn’t concern power losses in the different joints because there were no such general equations to be found. The most common way to calculate the power losses inside a joint is to do tests were the power loss is measured at different angles, torque and speed and then use that data to put together an approximated equation.</p><p>Most of the work on this project has been on theory studies and on programming. The main result of the project is the program Propeller Shaft Calculator.</p><p>Propeller Shaft Calculator is a program that is designed in Microsoft Excel. All the menus are programmed in the visual basic editor in Excel. The program is supposed to be used as a help while designing new propeller shafts.</p><p>Propeller Shaft Calculator can calculate all the coordinates, lengths, angles and directions on a propeller shaft. It also calculates natural frequencies, plunge, estimated power loss on the second shaft and angles in the joints. In the program you can choose to do calculations on four different configurations of propeller shafts but can quite</p><p>easy upgrade the program with more choices.</p><p>Basically the program works like this:</p><p>First you choose the right propeller shaft in the main menu. Then you fill out the indata sheet with coordinates, lengths, material data and so on. As you type in the input data the output data will appear in the out-data sheet next to the in-data. Every propeller shaft has also a calculations sheet were more detailed calculations can be</p><p>found.</p><p>The program also has a built in help function and a warning function that lights a warning sign next to the values if they are outside the limits.</p>
490

Mekanisk säkring av helikopter på fartygsdäck : en konceptuell fallstudie av Saabs UAV-system Skeldar M / Mechanical securing of a helicopter on a ship deck : a conceptual case study on Saab’s UAV system Skeldar M

Berg, Tobias, Carlsson, David January 2008 (has links)
<p>Den senaste trenden inom flygvapenindustrin är utveckling av obemannade farkoster. Den svenska vapenindustrikoncernen Saab AB följer denna trend i och med den stundande introduktionen av företagets obemannade helikopter Skeldar V-150. Som ett led i vidareutvecklingen av detta system finns planer på att även lansera en marin variant, kallad Skeldar M. Tanken med denna marina variant är att möjliggöra fullständigt autonoma starter och landningar från fartyg. För att kunna genomföra detta på ett tryggt sätt även i hårt väder krävs att helikoptern hålls säkrad på fartygsdäcket såväl innan start som efter landning.</p><p>Uppgiften för detta arbete har varit att ta fram koncept för hur ett sådant säkringssystem skulle kunna se ut. För att ta fram idéer för dessa koncept har en flitigt brukad produktutvecklingsmetod använts. Metoden innebär att en kravspecifikation tas fram utifrån kundens behov. Med stöd av den genereras sedan ett antal produktkoncept genom kreativt tänkande och analyser av hur andra löser samma problem. Koncepten jämförs sedan utefter hur väl de uppfyller kundens behov och de bästa idéerna kan på så sätt väljas ut och vidareutvecklas.</p><p>De koncept som tagits fram i detta arbete har sträckt sig från enklare idéer där kardborrmaterial används för att säkra helikoptern, till system som mäter in helikopterns position relativt fartyget och justerar sitt eget läge därefter. Totalt framkom nio grundidéer och sammanlagt tolv varianter på antiglidsystem. I samråd med personer inblandade i Skeldar-projektet valdes sedermera tre av koncepten ut för att vidareutvecklas ytterligare, en lösning där helikoptern vinschas ner på däck, en annan där kardborrlås används för att säkra den och en tredje där sugkoppar håller Skeldar fast.</p><p>Med hänsyn tagen till bland annat svårigheter att implementera en vinschlösning ombord på såväl Skeldar som fartygen valdes denna lösning slutligen bort. Svårigheterna bottnar framför allt i utrymmesbrist och problem med automatisk sammankoppling av helikopter och fartyg. De koncept som rekommenderas i detta arbete blir därför ett av systemen med kardborrlås eller sugkoppar.</p> / <p>The latest trend within the air force industry is development of unmanned aerial vehicles. The Swedish defense industry group Saab AB is following this trend by means of the introduction of their unmanned helicopter Skeldar V-150. As part of the further development of this system Saab has plans on introducing a marine version of the system, called Skeldar M. One of the purposes of this version is to enable completely autonomous take-offs and landings from ships. To be able to complete this in a safe manner in harsh conditions the helicopter needs to be secured to the deck before take-off as well as after landing.</p><p>The purpose of this thesis has been to develop a concept for keeping Skeldar secured on deck. To establish ideas for these concepts a common method for product development has been used. The method involves acquiring customer needs and from these needs establish a list of demands on the product itself. A set of product concepts are then generated by means of creative thinking and competitor analysis. After that the concepts are compared based on how well they meet the demands put upon them and the best ideas get picked out and further developed.</p><p>The concepts developed in this thesis stretch from simple ideas where hook and loop fasteners are used to secure the helicopter to more advanced ones where the helicopter’s position relative to the ship is measured and the system adjust to this position. All in all nine basic ideas were developed and a total of twelve versions on securing systems. In consultation with people involved in the Skeldar project, three of the concepts were chosen for further development, one concept where the helicopter was winched to the deck, a second where hook and loop fasteners were used to secure it and finally one where vacuum grippers keeps Skeldar on deck.</p><p>With difficulties of implementing a winch system onboard Skeldar as well as on board the ships taken into account, this solution was dropped. This was primarly due to lack of space and difficulties solving an automatic connection between helicopter and ship. The concepts recommended in this thesis will therefore be one of the systems where hook and loop fasteners or vacuum grippers are used.</p>

Page generated in 0.2726 seconds