• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 7
  • 3
  • 2
  • 2
  • Tagged with
  • 75
  • 75
  • 75
  • 75
  • 43
  • 28
  • 26
  • 20
  • 19
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Video Streaming in Vehicular Ad Hoc Networks: Challenges, Protocols and The Use of Redundancy

Rezende, Cristiano 30 April 2014 (has links)
Vehicular Ad Hoc Networks (VANETs) are no longer a futuristic promise but rather an attainable technology. Vehicles are already equipped with a variety of computational devices that control or assist drivers in many tasks such as localization, safely breaking, parking and passengers entertainment. The majority of services envisioned for VANETs either require the provision of multimedia support or have it as an extremely beneficial additional feature. In particular, video streaming capabilities over VANETs are crucial to the development of interesting and valuable services. However,VANETs’ highly dynamic topology poses as a demanding challenge to the fulfillment of video streaming’s stringent requirements. The main goal on this thesis is the development of feasible solutions that support the streaming of video content over VANETs. Initially, the main issues of VANETs are explained through both a discussion of its characteristics and the results of some preliminary conclusions. Based on this understanding of VANETs’ peculiarities, three distinguishing solutions are designed REACT-DIS, REDEC and VIRTUS; the two first for video dissemination and the later for video unicast. These solutions offer a great advancement towards the provision of video streaming capabilities but packet loss is still an issue at high data rates. In order to improve the delivery ratios reached by the previous solutions, redundancy is used as an error correction mechanism. The use of redundancy is ideal for VANETs in handling packet loss as they do not require any interaction between source and receivers nodes. Sophisticated coding techniques were used for an efficient use of the increase on entropy of the information sent by the source node. It was also evaluated the selective use of redundancy solely on packets carrying the crucial information of I-frames. Although this selective approach obtained lower overall delivery ratios than when redundancy is used for all packets, the video quality obtained similar improvements under a much lower cost. The evaluation on the use of redundancy has considered the impact on the rate by which unique video content is received at end-users which is fundamental to understand the resolution of videos that can be displayed. This thesis provides several contributions as it advances the knowledge in the peculiarities of VANETs, solutions for video streaming over VANETs and the use of redundancy as an error correction mechanism for video streaming over VANETs.
2

Performance enhancement in VANET with admission control and contention window adjustment

Tiwari, Vivek 10 September 2012 (has links)
Vehicular Ad Hoc Networks (VANET), a derivative of mobile networks, has the capability to increase the safety, e ciency and comfort of transportation systems, and provide users on-the-road Internet connectivity. Because of its impetus and signi cance in practical scenarios, it becomes a sought after topic in both industry and academia. In this thesis, we focus on the vehicle-to-infrastructure (V2I) drive-thru Internet services in a highway scenario. The road side unit (RSU) along a highway can provide network services for vehicles within the coverage. To enhance the network performance, we propose two strategies. First, to ensure a high network throughput, the RSU uses an admission control strategy to limit the competition among vehicles, and avoid the waste of channel time to the low-data-rate users. Second, based on the vehicle density, we also propose a contention window (CW) adjustment strategy which can reduce the collision probability when the network is congested, and reduce the idle time otherwise. Extensive simulations using network simulator (NS-2) are given, which demonstrate the e ectiveness of the proposed solutions. / Graduate
3

Video Streaming in Vehicular Ad Hoc Networks: Challenges, Protocols and The Use of Redundancy

Rezende, Cristiano January 2014 (has links)
Vehicular Ad Hoc Networks (VANETs) are no longer a futuristic promise but rather an attainable technology. Vehicles are already equipped with a variety of computational devices that control or assist drivers in many tasks such as localization, safely breaking, parking and passengers entertainment. The majority of services envisioned for VANETs either require the provision of multimedia support or have it as an extremely beneficial additional feature. In particular, video streaming capabilities over VANETs are crucial to the development of interesting and valuable services. However,VANETs’ highly dynamic topology poses as a demanding challenge to the fulfillment of video streaming’s stringent requirements. The main goal on this thesis is the development of feasible solutions that support the streaming of video content over VANETs. Initially, the main issues of VANETs are explained through both a discussion of its characteristics and the results of some preliminary conclusions. Based on this understanding of VANETs’ peculiarities, three distinguishing solutions are designed REACT-DIS, REDEC and VIRTUS; the two first for video dissemination and the later for video unicast. These solutions offer a great advancement towards the provision of video streaming capabilities but packet loss is still an issue at high data rates. In order to improve the delivery ratios reached by the previous solutions, redundancy is used as an error correction mechanism. The use of redundancy is ideal for VANETs in handling packet loss as they do not require any interaction between source and receivers nodes. Sophisticated coding techniques were used for an efficient use of the increase on entropy of the information sent by the source node. It was also evaluated the selective use of redundancy solely on packets carrying the crucial information of I-frames. Although this selective approach obtained lower overall delivery ratios than when redundancy is used for all packets, the video quality obtained similar improvements under a much lower cost. The evaluation on the use of redundancy has considered the impact on the rate by which unique video content is received at end-users which is fundamental to understand the resolution of videos that can be displayed. This thesis provides several contributions as it advances the knowledge in the peculiarities of VANETs, solutions for video streaming over VANETs and the use of redundancy as an error correction mechanism for video streaming over VANETs.
4

Study of Connectivity Probability in Vanets by a Two-Dimensional Platoon-Based Model

Liu, Donglin 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With the fast development of 5G networks and the advancement in networking technologies, more and more new technologies such as internet of vehicles (IoV) is catching our eyes. With technologies of artificial intelligence and automatic control, IoV is transformed into an intelligent transportation system (ITS). The object of this thesis is to analyze the connectivity probability issues in vehicle ad hoc networks (VANETs), which is a subset of ITS. This will be achieved by a platoon-based two dimensional model. In order to make the results more accurate and more close to real scenario, different situations will be analyzed separately, and different types of platoon will be included. In addition, other system parameters are also discussed and stimulated. The results show that many parameters like the increases of traffic density, ratio of platoon, and lane numbers will improve connectivity probability. No-leader based platoons are easier to connect to the base stations compared to leader based platoons.
5

Network Coding in Multihop Wireless Networks: Throughput Analysis and Protocol Design

Yang, Zhenyu 29 April 2011 (has links)
Multi-hop wireless networks have been widely considered as promising approaches to provide more convenient Internet access for their easy deployment, extended coverage, and low deployment cost. However, providing high-speed and reliable services in these networks is challenging due to the unreliable wireless links, broadcast nature of wireless transmissions, and frequent topology changes. On the other hand, network coding (NC) is a technique that could significantly improve the network throughput and the transmission reliability by allowing intermediate nodes to combine received packets. More recently proposed symbol level network coding (SLNC), which combines packets at smaller symbol scale, is a more powerful technique to mitigate the impact of lossy links and packet collisions in wireless networks. NC, especially SLNC, is thus a particular effective approach to providing higher data rate and better transmission reliability for applications such as mobile content distribution in multihop wireless networks. This dissertation focuses on exploiting NC in multihop wireless networks. We studied the unique features of NC and designed a suite of distributed and localized algorithms and protocols for content distribution networks using NC and SLNC. We also carried out a theoretical study on the network capacity and performance bounds achievable by SLNC in mobile wireless networks. We proposed CodeOn and CodePlay for popular content distribution and live multimedia streaming (LMS) in vehicular ad hoc networks (VANETs), respectively, where many important practical factors are taken into consideration, including vehicle distribution, mobility pattern, channel fading and packet collision. Specifically, CodeOn is a novel push based popular content distribution scheme based on SLNC, where contents are actively broadcast to vehicles from road side access points and further distributed among vehicles using a cooperative VANET. In order to fully enjoy the benefits of SLNC, we proposed a suite of techniques to maximize the downloading rate, including a prioritized and localized relay selection mechanism where the selection criteria is based on the usefulness of contents possessed by vehicles, and a lightweight medium access protocol that naturally exploits the abundant concurrent transmission opportunities. CodePlay is designed for LMS applicaitions in VANETs, which could fully take advantage of SLNC through a coordinated local push mechanism. Streaming contents are actively disseminated from dedicated sources to interested vehicles via local coordination of distributively selected relays, each of which will ensure smooth playback for vehicles nearby. CodeOn pursues a single objective of maximizing downloading rate, while CodePlay improves the performance of LMS service in terms of streaming rate, service delivery delay, and bandwidth efficiency simultaneously. CodeOn and CodePlay are among the first works that exploit the features of SLNC to simplify the protocol design whilst achieving better performance. We also developed an analytical framework to compute the expected achievable throughput of mobile content distribution in VANETs using SLNC. We presented a general analytical model for the expected achievable throughput of SLNC in a static wireless network based on flow network theory and queuing theory. Then we further developed the model to derive the expected achievable accumulated throughput of a vehicle driving through the area of interest under a mobility pattern. Our proposed framework captures the effects of multiple practical factors, including vehicle distribution and mobility pattern, channel fading and packet collision, and we characterized the impacts of those factors on the expected achievable throughput. The results from this research are not only of interest from theoretical perspective but also provide insights and guidelines on protocol design in SLNC-based networks.
6

Secure and privacy-preserving protocols for VANETs

Chim, Tat-wing., 詹達榮. January 2011 (has links)
published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy
7

A Quality Guaranteed Video Dissemination Protocol over Urban Vehicular Ad Hoc Networks

Li, Yang 30 April 2014 (has links)
Video dissemination over Vehicular Ad Hoc Networks (VANETs) is an attractive technology which supports many novel applications. Hence, the merit of this thesis has twofold. Firstly, we evaluate and compare three routing techniques and two error resilience techniques. We select a sender-based routing technique called SUV and compare it with the other two selected receiver-based routing techniques named REACT-DIS and CDS. The results, more specifically, show that the receiver-based solutions outperform the sender-based solution. In addition, only CDS method fulfils the general quality requirements as it is the best that reduces redundancy packets and covers the whole topology. The results also indicate that the video coding scheme, Interleaving, can fix the multiple consecutive packet losses and guarantee reliable video qualities over VANETs. Network Coding, however, fails to provide satisfactory video quality for urban scenarios. This study next combines the selected receiver based routing techniques and the two error resilience techniques. We find the best combination is Interleaving over CDS. Secondly, we design a quality guaranteed video dissemination protocol for urban VANETs scenarios. Based on our comparison result, our protocol selects the CDS and Interleaving as the routing and error resilient techniques. To fix the single packet loses caused by the topology’s intermittent disconnection and collisions, we propose a store-carry-broadcast scheme for the nodes to re-transmit the local buffer saved packets. The results, when compared to the selected techniques and combinations, show that our proposed protocol is the most efficient one in terms of packet delivery, delay, overhead and video quality.
8

Group-Based Authentication Mechanisms for Vehicular Ad-Hoc Networks

Riley, Marshall K 01 May 2010 (has links)
Vehicular ad hoc networks (VANETs) provide opportunities to exchange traffic information among vehicles allowing drivers to not only adjust their routes but also prevent possible collisions. Due to the criticality of exchanged information, message authentication which will not expose the privacy of vehicles is required. The majority of current authentication schemes for VANETs depend primarily on public-key cryptography which brings extra overhead in terms of delay and requires infrastructure support for certificate verification. Symmetric-key based techniques can be more efficient, but they introduce significant key maintenance overheads. Herein, by considering the natural group behavior of vehicle communications, we propose an efficient and lightweight symmetric-key based authentication scheme for VANETs based on group communication. Expanding the protocol's flexibility, we also propose an extension which integrates certain benefits of asymmetric-key techniques. We analyze the security properties of our proposed schemes to show there applicability when there is little to no infrastructure support. In addition, the proposed protocol was implemented and tested with real-world vehicle data. Simulation results confirmed the efficiency in terms of delay with respect to other proposed techniques.
9

Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

Eze, Elias Chinedum January 2017 (has links)
With the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric F(j) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments.
10

Relay Selection for Heterogeneous Transmission Powers in Connected Vehicles

Alotaibi, Maryam January 2017 (has links)
It is widely believed that the advances of Vehicle-to-Vehicle (V2V) communications will help to remodel the prospect of road transportation systems. By virtue of V2V communications, information generated by the vehicle control system, on-board sensors or passengers can be effectively disseminated among vehicles in proximity, or to vehicles in multiple hops away in a vehicular ad-hoc network (VANET). Without assistance from any built infrastructure, a variety of active road safety applications (e.g., Vehicle-Based Road Condition Warning, Cooperative Collision Warning, Approaching Emergency Vehicle Warning) and traffic efficiency management applications (e.g., Wrong Way Driver Warning) are enabled by inter-vehicle wireless links. The purpose of connecting vehicle technologies is to improve road safety, awareness, and transportation systems efficiency. The Wireless Access for Vehicular Environments (WAVE) technology/Dedicated Short-Range Communications (DSRC) is the main enabling wireless technology for both V2V and vehicle-to-Infrastructure (V2I) communications. From USDOT and stakeholders detailed analysis, it is resolved that WAVE is the only viable option for critical safety and other low latency mobility and environmental applications. WAVE technology has reached to a mature stage and a basic V2V system is expected to be deployed in the next few years. In the late part of 2015, USDOT announce that WAVE is sufficiently robust to proceed with the preparation for deployment of connected vehicle environments. The USDOT has created a roadmap with preliminary plans to guide industries and public agencies implementation efforts. However, there are persisting major concerns regarding the V2V initiative needing more analysis and testing. One of the concerns is the channel congestion. Channel congestion may impact WAVE effectiveness, which may in turn impact the effectiveness of supported safety applications. Suggested solutions to mitigate congestion are focused on supporting adaptive control of the message transmission power. The Institute of Electrical and Electronics Engineers (IEEE), and European Telecommunications Standards Institute (ETSI) have included transmit power component per packet to be used for channel congestion control mechanism. The adjustment of transmission powers has created an environment of vehicles with different transmission powers. Such environment will affect the performance of the proposed protocols to disseminate warning messages. It may also affect the performance of periodic beaconing that is required by most of the safety applications. Thus far, several protocols have been proposed to help identify appropriate relay vehicles. However, such approaches neglect the fact that vehicle transmission ranges are typically heterogeneous due to different transmission power values or dynamic adjustment of power to alleviate congestion. The proper selection of relay nodes governs high delivery ratio, acceptable overall end-to-end delay and efficient bandwidth usage. In this work, area-based relay selection protocols that work in heterogeneous transmission powers are introduced. Mathematical functions are developed for a timer and decision probability to be used by each vehicle receiving the message. The values of the two functions allow the vehicle to determine if it is the next to act as relay node or not. Geometric taxonomy for all possible overlap patterns in wireless environment is constructed with the related math calculations. Moreover, an adaptive expiry time for neighbours-table entries that harmonizes with dynamic beacon scheduling is proposed.

Page generated in 0.0689 seconds