• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Coexistence of Vehicular Communication Technologies and Wi-Fi in the 5 and 6 GHz bands

Naik, Gaurang Ramesh 20 November 2020 (has links)
The unlicensed wireless spectrum offers exciting opportunities for developing innovative wireless applications. This has been true ever since the 2.4 GHz band and parts of the 5 GHz bands were first opened for unlicensed access worldwide. In recent years, the 5 GHz unlicensed bands have been one of the most coveted for launching new wireless services and applications due to their relatively superior propagation characteristics and the abundance of spectrum therein. However, the appetite for unlicensed spectrum seems to remain unsatiated; the demand for additional unlicensed bands has been never-ending. To meet this demand, regulators in the US and Europe have been considering unlicensed operations in the 5.9 GHz bands and in large parts of the 6 GHz bands. In the last two years alone, the Federal Communications Commission in the US has added more than 1.2 GHz of spectrum in the pool of unlicensed bands. Wi-Fi networks are likely to be the biggest beneficiaries of this spectrum. Such abundance of spectrum would allow massive improvements in the peak throughput and potentially allow a considerable reduction of latency, thereby enabling support for emerging wireless applications such as augmented and virtual reality, and mobile gaming using Wi-Fi over unlicensed bands. However, access to these bands comes with its challenges. Across the globe, a wide range of incumbent wireless technologies operate in the 5 GHz and 6 GHz bands. This includes weather and military radars, and vehicular communication systems in the 5 GHz bands, and fixed-service systems, satellite systems, and television pick-up stations in the 6 GHz bands. Furthermore, due to the development of several cellular-based unlicensed technologies (such as Licensed Assisted Access and New Radio Unlicensed, NR-U), the competition for channel access among unlicensed devices has also been increasing. Thus, coexistence across wireless technologies in the 5 GHz and 6 GHz bands has emerged as an extremely challenging and interesting research problem. In this dissertation, we first take a comprehensive look at the various coexistence scenarios that emerge in the 5 GHz and 6 GHz bands as a consequence of new regulatory decisions. These scenarios include coexistence between Wi-Fi and incumbent users (both in the 5 GHz and 6 GHz bands), coexistence of Wi-Fi and vehicular communication systems, coexistence across different vehicular communication technologies, and coexistence across different unlicensed systems. Since a vast majority of these technologies are fundamentally different from each other and serve diverse use-cases each coexistence problem is unique. Insights derived from an in-depth study of one coexistence problem do not help much when the coexisting technologies change. Thus, we study each scenario separately and in detail. In this process, we highlight the need for the design of novel coexistence mechanisms in several cases and outline potential research directions. Next, we shift our attention to coexistence between Wi-Fi and vehicular communication technologies designed to operate in the 5.9 GHz intelligent transportation systems (ITS) bands. Until the development of Cellular V2X (C-V2X), dedicated short range communications (DSRC) was the only major wireless technology that was designed for communication in high-speed and potentially dense vehicular settings. Since DSRC uses the IEEE 802.11p standard for its physical (PHY) and medium access control (MAC) layers, the manner in which DSRC and Wi-Fi devices try to gain access to the channel is fundamentally similar. Consequently, we show that spectrum sharing between these two technologies in the 5.9 GHz bands can be easily achieved by simple modifications to the Wi-Fi MAC layer. Since the design of C-V2X in 2017, however, the vehicular communication landscape has been fast evolving. Because DSRC systems were not widely deployed, automakers and regulators had an opportunity to look at the two technologies, consider their benefits and drawbacks and take a fresh look at the spectrum sharing scenario. Since Wi-Fi can now potentially share the spectrum with C-V2X at least in certain regions, we take an in-depth look at various Wi-Fi and C-V2X configurations and study whether C-V2X and Wi-Fi can harmoniously coexist with each other. We determine that because C-V2X is built atop cellular LTE, Wi-Fi and C-V2X systems are fundamentally incompatible with each other. If C-V2X and Wi-Fi devices are to share the spectrum, considerable modifications to the Wi-Fi MAC protocol would be required. Another equally interesting scenario arises in the 6 GHz bands, where 5G NR-U and Wi-Fi devices are likely to operate on a secondary shared basis. Since the 6 GHz bands were only recently considered for unlicensed access, these bands are free from Wi-Fi and NR-U devices. As a result, the greenfield 6 GHz bands provide a unique and rare opportunity to freshly evaluate the coexistence between Wi-Fi and cellular-based unlicensed wireless technologies. We study this coexistence problem by developing a stochastic geometry-based analytical model. We see that by disabling the listen before talk based legacy contention mechanism---which has been used by Wi-Fi devices ever since their conception---the performance of both Wi-Fi and NR-U systems can improve. This has important implications in the 6 GHz bands, where such legacy transmissions can indeed be disabled because Wi-Fi devices, for the first time since the design of IEEE 802.11a, can operate in the 6 GHz bands without any backward compatibility issues. In the course of studying the aforementioned coexistence problems, we identified several gaps in the literature on the performance analysis of C-V2X and IEEE 802.11ax---the upcoming Wi-Fi standard. We address three such gaps in this dissertation. First, we study the performance of C-V2X sidelink mode 4, which is the communication mode in C-V2X that allows direct vehicular communications (i.e., without assistance from the cellular infrastructure). Using our in-house standards-compliant network simulator-3 (ns-3) simulator, we perform simulations to evaluate the performance of C-V2X sidelink mode 4 in highway environments. In doing so, we identify that packet re-transmissions, which is a feature introduced in C-V2X to provide frequency and time diversity, thereby improving the system performance, can have the opposite effect if the vehicular density increases. In fact, packet re-transmissions are beneficial for C-V2X system performance only at low vehicular densities. Thus, if vehicles are statically configured to always use/disable re-transmissions, the maximum potential of this feature is not realized. Therefore, we propose a simple and effective, distributed re-transmission control mechanism named Channel Congestion Based Re-transmission Control (C2RC), which leverages the locally available channel sensing results to allow vehicles to autonomously decide when to switch on re-transmissions and when to switch them off. Second, we present a detailed analysis of the performance of Multi User Orthogonal Frequency Division Multiple Access (MU OFDMA)---a feature newly introduced in IEEE 802.11ax---in a wide range of deployment scenarios. We consider the performance of 802.11ax networks when the network comprises of only 802.11ax as well as a combination of 802.11ax and legacy stations. The latter is a practical scenario, especially during the initial phases of 802.11ax deployments. Simulation results, obtained from our ns-3 based simulator, give encouraging signs for 802.11ax performance in many real-world scenarios. That being said, there are some scenarios where naive usage of MU OFDMA by an 802.11ax-capable Wi-Fi AP can be detrimental to the overall system performance. Our results indicate that careful consideration of network dynamics is critical in exploiting the best performance, especially in a heterogeneous Wi-Fi network. Finally, we perform a comprehensive simulation study to characterize the performance of Multi Link Aggregation (MLA) in IEEE 802.11be. MLA is a novel feature that is likely to be introduced in next-generation Wi-Fi (i.e., Wi-Fi 7) devices and is aimed at reducing the worst-case latency experienced by Wi-Fi devices in dense traffic environments. We study the impact of different traffic densities on the 90 percentile latency of Wi-Fi packets and identify that the addition of a single link is sufficient to substantially bring down the 90 percentile latency in many practical scenarios. Furthermore, we show that while the addition of subsequent links is beneficial, the largest latency gain in most scenarios is experienced when the second link (i.e., one additional) link is added. Finally, we show that even in extremely dense traffic conditions, if a sufficient number of links are available at the MLA-capable transmitter and receiver, MLA can help Wi-Fi devices to meet the latency requirements of most real-time applications. / Doctor of Philosophy / Wireless networks have become ubiquitous in our lives today. Whether it is cellular connectivity on our mobile phones or access to Wi-Fi hotspots on laptops, tablets, and smartphones, never before has wireless communication been as integral to our lives as it is today. In many wireless communication systems, wireless devices operate by sending signals to and receiving signals from a central entity that connects to the wired Internet infrastructure. In the case of cellular networks, this entity is the cell tower deployed by the operators (such as ATandT, Verizon, etc. in the US), while the Wi-Fi router deployed in homes and offices plays this role in Wi-Fi networks. There is also another class of wireless systems, where wireless devices communicate with each other without requiring to communicate with any central entity. An example of such a distributed communication system---which is fast gaining popularity---is vehicular ommunication networks. End-user devices (e.g. cellphone, laptop, tablet, or a vehicle) can communicate with each other or the central entity only if they are both tuned to the same frequency channel. This channel can lie anywhere within the radio frequency spectrum, but some frequency channels (the collection of channels is referred to as frequency bands) are more favorable—--in terms of how far the signal sent over these channels can reach—--than others. Another dimension to these frequency bands is the licensing mechanism. Not all frequency bands are free to use. In fact, most frequency bands in the US and other parts of the world are licensed by the regional regulatory agencies. The most well-known example of this licensing framework is the cellular network. Cellular operators spend large amounts of money (to the tune of billions of dollars) to gain the privileges of exclusively operating in a given frequency band. No other operator or wireless device is then allowed to operate in this band. Without any external interfering wireless device, cellular operators can guarantee a certain quality of service that is provided to its customers. Thus, the benefits of using licensed frequency bands are obvious but these bands and their associated benefits come at a high price. An alternative to licensed frequency bands are the unlicensed ones. As the name suggests, unlicensed frequency bands are those where any two or more wireless devices can communicate with each other (subject to certain rules) without having to pay any licensing fees. Unsurprisingly, because there is no limit to who or how many devices can communicate over these bands, wireless devices in these bands frequently experience external interference, which manifests to the end-user in terms of interruption of service. The best example of a wireless technology that uses unlicensed bands is Wi-Fi. One of the greatest advantages of Wi-Fi networks is that anyone can purchase a Wi-Fi router and deploy it within their homes or offices—--flexibility not afforded by licensed bands. However, this very flexibility and ease-of-use can sometimes contribute negatively to Wi-Fi performance. Arguably, we have all faced scenarios where the performance of Wi-Fi is poor. This is most likely to happen in scenarios where there are hundreds (or even thousands) of neighboring Wi-Fi devices, such as at stadiums, railway stations, concerts, etc. Based on our discussions above, it is clear as to why Wi-Fi performance suffers in such scenarios. Thus, although unlicensed bands are lucrative in terms of low-cost, and ease of use, there is no guarantee on how good a voice/video call or a video streaming session conducted over Wi-Fi will be. The above problem is well-known and well-researched. Regulators, researchers, and service providers actively seek solutions to offer better performance over unlicensed bands. An obvious solution is to make more unlicensed bands available; if all neighboring Wi-Fi users communicate with their respective routers on different channels, everyone could communicate interference-free. The problem, however, is that frequency bands are limited. Even more limited are those bands that support wireless communications over larger distances. Another solution is to improve the wireless technology—if a Wi-Fi device can more efficiently utilize the channel, its performance is likely to improve. This fact has driven the constant evolution of all wireless technologies. However, there are fundamental limits to how much a frequency channel can be exploited. Therefore, in recent years, stakeholders have turned to spectrum sharing. Even though a wireless network may possess an exclusive license to operate on a given frequency band, its users do not use the band everywhere and at all times. Then why not allow unlicensed wireless devices to operate in this band at such places and times? This is precisely the premise of spectrum sharing. In this dissertation, we look at the problem of coexistence between wireless technologies in the 5 GHz and 6 GHz bands. These two bands are extremely lucrative in terms of their relatively favorable propagation characteristics (i.e., their communication range) and the abundance of spectrum therein. Consequently, these bands have garnered considerable attention in recent years with the objective of opening these bands up for unlicensed services. However, the 5 GHz and 6 GHz bands are home to several licensed systems, and the performance of these systems cannot be compromised if unlicensed operations are allowed. Significant activity has taken place since 2013 concerning new technologies being developed, new spectrum sharing scenarios being proposed, and new rules being adopted in these two bands. We begin the dissertation by taking a comprehensive look at these issues, describing the various coexistence scenarios, surveying the existing literature, describing the major challenges, and providing directions for potential research. Next, we look at three coexistence problems in detail: (i) coexistence of dedicated short range communications (DSRC) and Wi-Fi, (ii) coexistence of cellular V2X (C-V2X) and Wi-Fi, and (iii) coexistence of 5G New Radio Unlicensed (5G NR-U) and Wi-Fi. The former two scenarios involve the coexistence of Wi-Fi with a vehicular communication technology (DSRC or C-V2X). These scenarios arose due to considerations in the US and Europe to allow Wi-Fi operations (on an unlicensed secondary basis) in the spectrum that was originally reserved for vehicular communications. Our work shows that because DSRC and Wi-Fi are built on top of fundamentally similar protocols, they are, to an extent, compatible with each other, and coexistence between these two technologies can be achieved by relatively simple modifications to the Wi-Fi protocol. However, C-V2X, owing to its inheritance from the cellular LTE, is not compatible with Wi-Fi. Consequently, significant research is required if the two technologies are to share the spectrum. On the other hand, in the coexistence of 5G NR-U and Wi-Fi, we focus on the operations of these two technologies in the 6 GHz bands. NR-U is a technology that is built atop the 5G cellular system, but is designed to operate in the unlicensed bands (in contrast to traditional cellular systems which only operate in licensed bands). Although these two technologies can coexist in the 5 GHz and 6 GHz bands, we restrict our attention in this dissertation to the 6 GHz bands. This is because the 6 GHz bands are unique in that the entire range of the 6 GHz bands were opened up for unlicensed access all at once recently, and no Wi-Fi or NR-U devices currently operate in these bands. As a result, we can learn from the mistakes made in the 5 GHz bands, where a vast majority of today's Wi-Fi networks operate. Our work shows that, indeed, we can take decisive steps---such as disabling certain Wi-Fi functions---in the 6 GHz bands, which can facilitate better coexistence in the 6 GHz bands. Finally, in the course of identifying and tackling the various coexistence scenarios in the 5 GHz and 6 GHz bands, we identify some open issues in the performance of new wireless technologies designed to operate in these bands. Specifically, we highlight the need to better understand and characterize the performance of Multi User Orthogonal Frequency Division Multiple Access (MU OFDMA), a feature common in cellular networks but newly introduced to Wi-Fi, in the upcoming Wi-Fi 6 generation of devices. We propose and evaluate an analytical model for the same. We also characterize the performance of Multi Link Aggregation---which a novel feature likely to be introduced in future Wi-Fi 7 devices---that is aimed at reducing the worst-case delay experienced by Wi-Fi devices in dense traffic conditions. Additionally, we identify an issue in the performance of the distributed operational mode of C-V2X. We show that packet re-transmissions, which is a feature aimed at improving the performance of C-V2X, can have a counter-productive effect and degrade the C-V2X performance in certain environments. We address this issue by proposing a simple, yet effective, re-transmission control mechanism.
Read more
12

Practical Algorithms and Analysis for Next-Generation Decentralized Vehicular Networks

Dayal, Avik 19 November 2021 (has links)
The development of autonomous ground and aerial vehicles has driven the requirement for radio access technologies (RATs) to support low latency applications. While onboard sensors such as Light Detection and Ranging (LIDAR), Radio Detection and Ranging (RADAR), and cameras can sense and assess the immediate space around the vehicle, RATs are crucial for the exchange of information on critical events, such as accidents and changes in trajectory, with other vehicles and surrounding infrastructure in a timely manner. Simulations and analytical models are critical in modelling and designing efficient networks. In this dissertation, we focus on (a) proposing and developing algorithms to improve the performance of decentralized vehicular communications in safety critical situations and (b) supporting these proposals with simulation and analysis of the two most popular RAT standards, the Dedicated Short Range Communications (DSRC) standard, and the Cellular vehicle-to-everything (C-V2X) standard. In our first contribution, we propose a risk based protocol for vehicles using the DSRC standard. The protocol allows a higher beacon transmission rate for vehicles that are at a higher risk of collision. We verify the benefits of the risk based protocol over conventional DSRC using ns-3 simulations. Two risk based beacon rate protocols are evaluated in our ns-3 simulator, one that adapts the beacon rate between 1 and 10 Hz, and another between 1 and 20 Hz. Our results show that both protocols improve the packet delivery ratio (PDR) performance by up to 45% in congested environments using the 1-10 Hz adaptive beacon rate protocol and by 38% using the 1-20 Hz adaptive scheme. The two adaptive beacon rate protocol simulation results also show that the likelihood of a vehicle collision due to missed packets decreases by up to 41% and 77% respectively, in a three lane dense highway scenario with 160 vehicles operating at different speeds. In our second contribution, we study the performance of a distance based transmission protocol for vehicular ad hoc network (VANET) using tools from stochastic geometry. We consider a risk based transmission protocol where vehicles transmit more frequently depending on the distance to adjacent vehicles. We evaluate two transmission policies, a listen more policy, in which the transmission rate of vehicles decreases as the inter-vehicular distance decreases, and a talk more policy, in which the transmission rate of vehicles increases as the distance to the vehicle ahead of it decreases. We model the layout of a highway using a 1-D Poisson Point process (PPP) and analyze the performance of a typical receiver in this highway setting. We characterize the success probability of a typical link assuming slotted ALOHA as the channel access scheme. We study the trends in success probability as a function of system parameters. Our third contribution includes improvements to the 3rd Generation Partnership Project (3GPP) Release 14 C-V2X standard, evaluated using a modified collision framework. In C-V2X basic safety messages (BSMs) are transmitted through Mode-4 communications, introduced in Release 14. Mode-4 communications operate under the principle of sensing-based semi-persistent scheduling (SPS), where vehicles sense and schedule transmissions without a base station present. We propose an improved adaptive semi-persistent scheduling, termed Ch-RRI SPS, for Mode-4 C-V2X networks. Specifically, Ch-RRI SPS allows each vehicle to dynamically adjust in real-time the BSM rate, referred to in the LTE standard as the resource reservation interval (RRI). Our study based on system level simulations demonstrates that Ch-RRI SPS greatly outperforms SPS in terms of both on-road safety performance, measured as collision risk, and network performance, measured as packet delivery ratio, in all considered C-V2X scenarios. In high density scenarios, e.g., 80 vehicles/km, Ch-RRI SPS shows a collision risk reduction of 51.27%, 51.20% and 75.41% when compared with SPS with 20 ms, 50 ms, and 100 ms RRI respectively. In our fourth and final contribution, we look at the tracking error and age-of-information (AoI) of the latest 3GPP Release 16 NR-V2X standard, which includes enhancements to the 3GPP Release 14 C-V2X standard. The successor to Mode-4 C-V2X, known as Mode-2a NR-V2X, makes slight changes to sensing-based semi-persistent scheduling (SPS), though vehicles can still sense and schedule transmissions without a base station present. We use AoI and tracking error, which is the freshness of the information at the receiver and the difference in estimated vs actual location of a transmitting vehicle respectively, to measure the impact of lost and outdated BSMs on a vehicle's ability to localize neighboring vehicles. In this work, we again show that such BSM scheduling (with a fixed RRI) suffers from severe under- and over- utilization of radio resources, which severely compromises timely dissemination of BSMs and increases the system AoI and tracking error. To address this, we propose an RRI selection algorithm that measures the age or freshness of messages from neighboring vehicles to select an RRI, termed Age of Information (AoI)-aware RRI (AoI-RRI) selection. Specifically, AoI-aware SPS (i) measures the neighborhood AoI (as opposed to channel availability) to select an age-optimal RRI and (ii) uses a modified SPS procedure with the chosen RRI to select BSM transmission opportunities that minimize the overall system AoI. We compare AoI-RRI SPS to Ch-RRI SPS and fixed RRI SPS for NR-V2X. Our experiments based on the Mode-2a NR-V2X standard implemented using system level simulations show both Ch-RRI SPS and AoI-RRI SPS outperform SPS in high density scenarios in terms of tracking error and age-of-information. / Doctor of Philosophy / An increasing number of vehicles are equipped with a large set of on-board sensors that enable and support autonomous capabilities. Such sensors, which include Light Detection and Ranging (LIDAR), Radio Detection and Ranging (RADAR), and cameras, are meant to increase passenger and driver safety. However, similar to humans, these sensors are limited to line-of-sight (LOS) visibility, meaning they cannot see beyond other vehicles, corners, and buildings. For this reason, efficient vehicular communications are essential to the next generation of vehicles and could significantly improve road safety. In addition, vehicular communications enable the timely exchange of critical information with other vehicles, cellular and roadside infrastructure, and pedestrians. However, unlike typical wireless and cellular networks, vehicular networks are expected to operate in a distributed manner, as there is no guarantee of the presence of cellular infrastructure. Accurate simulations and analytical models are critical in improving and guaranteeing the performance of the next generation of vehicular networks. In this dissertation, we propose and develop novel and practical distributed algorithms to enhance the performance of decentralized vehicular communications. We support these algorithms with computer simulations and analytical tools from the field of stochastic geometry.
Read more
13

Enhancing Performance of Next-Generation Vehicular and Spectrum Sharing Wireless Networks: Practical Algorithms and Fundamental Limits

Rao, Raghunandan M. 20 August 2020 (has links)
Over the last few decades, wireless networks have morphed from traditional cellular/wireless local area networks (WLAN), into a wide range of applications, such as the Internet-of-Things (IoT), vehicular-to-everything (V2X), and smart grid communication networks. This transition has been facilitated by research and development efforts in academia and industry, which has resulted in the standardization of fifth-generation (5G) wireless networks. To meet the performance requirements of these diverse use-cases, 5G networks demand higher performance in terms of data rate, latency, security, and reliability, etc. At the physical layer, these performance enhancements are achieved by (a) optimizing spectrum utilization shared amongst multiple technologies (termed as spectrum sharing), and (b) leveraging advanced spatial signal processing techniques using large antenna arrays (termed as massive MIMO). In this dissertation, we focus on enhancing the performance of next-generation vehicular communication and spectrum sharing systems. In the first contribution, we present a novel pilot configuration design and adaptation mechanism for cellular vehicular-to-everything (C-V2X) networks. Drawing inspiration from 4G and 5G standards, the proposed approach is based on limited feedback of indices from a codebook comprised of quantized channel statistics information. We demonstrate significant rate improvements using our proposed approach in terrestrial and air-to-ground (A2G) vehicular channels. In the second contribution, we demonstrate the occurrence of cellular link adaptation failure due to channel state information (CSI) contamination, because of coexisting pulsed radar signals that act as non-pilot interference. To mitigate this problem, we propose a low-complexity semi-blind SINR estimation scheme that is robust and accurate in a wide range of interference and noise conditions. We also propose a novel dual CSI feedback mechanism for cellular systems and demonstrate significant improvements in throughput, block error rate, and latency, when sharing spectrum with a pulsed radar. In the third contribution, we develop fundamental insights on underlay radar-massive MIMO spectrum sharing, using mathematical tools from stochastic geometry. We consider a multi-antenna radar system, sharing spectrum with a network of massive MIMO base stations distributed as a homogeneous Poisson Point Process (PPP) outside a circular exclusion zone centered around the radar. We propose a tractable analytical framework, and characterize the impact of worst-case downlink cellular interference on radar performance, as a function of key system parameters. The analytical formulation enables network designers to systematically isolate and evaluate the impact of each parameter on the worst-case radar performance and complements industry-standard simulation methodologies by establishing a baseline performance for each set of system parameters, for current and future radar-cellular spectrum sharing deployments. Finally, we highlight directions for future work to advance the research presented in this dissertation and discuss its broader impacts across the wireless industry, and policy-making. / Doctor of Philosophy / The impact of today's technologies has been magnified by wireless networks, due to the standardization and deployment of fifth-generation (5G) cellular networks. 5G promises faster data speeds, lower latency and higher user security, among other desirable features. This has made it capable of meeting the performance requirements of key infrastructure such as smart grid and mission-critical networks, and novel consumer applications such as smart home appliances, smart vehicles, and augmented/virtual reality. In part, these capabilities have been achieved by (a) better spectrum utilization among various wireless technologies (called spectrum sharing), and (b) serving multiple users on the same resource using large multi-antenna systems (called massive MIMO). In this dissertation, we make three contributions that enhance the performance of vehicular communications and spectrum sharing systems. In the first contribution, we present a novel scheme wherein a vehicular communication link adapts to the channel conditions by controlling the resource overhead in real-time, to improve spectral utilization of data resources. The proposed scheme enhances those of current 4G and 5G networks, which are based on limited feedback of quantized channel statistics, fed back from the receiver to the transmitter. In the second contribution, we show that conventional link adaptation methods fail when 4G/5G networks share spectrum with pulsed radars. To mitigate this problem, we develop a comprehensive signal processing framework, consisting of a hybrid SINR estimation method that is robust and accurate in a wide range of interference and noise conditions. Concurrently, we also propose a scheme to pass additional information that captures the channel conditions in the presence of radar interference, and analyze its performance in detail. In the third contribution, we focus on characterizing the impact of 5G cellular interference on a radar system in shared spectrum, using mathematical tools from stochastic geometry. We model the worst-case interference scenario, and study the impact of the system parameters on the worst-case radar performance. In summary, this dissertation advances the state-of-the-art in vehicular communications and spectrum sharing, through (a) novel contributions in protocol design and (b) development of mathematical tools for performance characterization.
Read more
14

Secure and Privacy Preserving Vehicular Communication Systems: Identity and Credential Management Infrastructure

Khodaei, Mohammad January 2016 (has links)
Vehicular Communication (VC) systems can greatly enhance road safety and transportation efficiency. Vehicles are equipped with sensors to sense their surroundings and the internal Controller Area Network (CAN) bus. Hence, vehicles are becoming part of a large-scale network, the so-called Internet of Vehicles (IoV). Deploying such a large-scale VC system cannot materialize unless the VC systems are secure and do not expose their users’ privacy. Vehicles could be compromised or their sensors become faulty, thus disseminating erroneous information across the network. Therefore, participating vehicles should be accountable for their actions. Moreover, user privacy is at stake: vehicles should disseminate spatio-temporal information frequently. Due to openness of the wireless communication, an observer can eavesdrop the communication to infer users’ sensitive information, thus profiling users. The objective is to secure the communication, i.e., prevent malicious or compromised entities from affecting the system operation, and ensure user privacy, i.e., keep users anonymous to any external observer but also for security infrastructure entities and service providers.In this thesis, we focus on the identity and credential management infrastructure for VC systems, taking security, privacy, and efficiency into account. We begin with a detailed investigation and critical survey of the standardization and harmonization efforts. We point out the remaining challenges to be addressed in order to build a Vehicular Public-Key Infrastructure (VPKI). We provide a VPKI design that improves upon existing proposals in terms of security and privacy protection and efficiency. More precisely, our scheme facilitates multi-domain operations in VC systems and enhances user privacy, notably preventing linking of pseudonyms based on timing information and offering increased protection in the presence of honest-but-curious VPKI entities. We further extensively evaluate the performance of the full-blown implementation of our VPKI for a large-scale VC deployment. Our results confirm the efficiency, scalability and robustness of our VPKI. / <p>QC 20160927</p>
Read more
15

CVS : a framework architecture for D2D-based cellular vehicular services in 4G networks and beyond / CVS : un framework d'architecture pour le déploiement de services véhiculaires basés sur les communications LTE-D2D dans les réseaux 4G/5G

Toukabri, Thouraya 02 December 2016 (has links)
L'explosion du trafic dans les réseaux mobiles d'aujourd'hui est l'une des préoccupations majeures des opérateurs mobiles. En effet, entre investir dans le développement de l’infrastructure pour supporter l’évolution des besoins des utilisateurs et faire face à la concurrence accrue des nouveaux acteurs du marché, l’enjeu est considérable. Dans ce contexte, les communications Device-to-Device (D2D) offrent aux opérateurs mobiles de nouvelles opportunités aussi bien financières que techniques, à travers les communications directes entre les appareils mobiles permettant de délester le réseau d'une partie du trafic. L'organisme de standardisation 3GPP a défini des évolutions de son architecture LTE/4G fonctionnelle pour supporter les communications D2D dans le cadre de Services de Proximité (ProSe). Cependant, les modèles économiques autour de ces nouveaux services sont encore flous et les solutions actuellement proposées par le 3GPP visent un déploiement à court terme d’un ensemble limité de services (ex : les services de sécurité publique). La première contribution proposée dans le cadre de cette thèse est une évolution de l'architecture ProSe vers une architecture cible distribuée dans laquelle les fonctions liées à ProSe sont mutualisées avec d'autres fonctions réseaux. La deuxième contribution porte sur l’intégration des services véhiculaires dans les réseaux mobiles en tant que services ProSe particuliers reposant sur les communications D2D. L'architecture CVS (Cellular Vehicular Services) est alors proposée comme solution pour un déploiement à grande échelle des services véhiculaires en s'appuyant sur une nouvelle évolution de l’architecture ProSe distribuée. Un algorithme de « clustering » ainsi que des procédures de communication en mode relais D2D sont utilisés dans la conception de la solution afin d’optimiser l'usage des ressources du réseau. Enfin, les performances de ces contributions sont évaluées à l'aide de modèles analytiques et de simulations afin de valider les approches et solutions proposées / The traffic explosion in today’s mobile networks is one of the major concerns of mobile operators. This explosion is mostly widening the gap between networks’ capacities and users’ growing needs in terms of bandwidth and QoS (Quality of Service), which directly impacts operators’ business profitability. In this context, Device-to-Device (D2D) communications offer mobile operators business and technical opportunities by allowing the network traffic offload with D2D direct communications between mobile devices. The recent standardization of D2D-based services as Proximity Services (ProSe) by the 3GPP provides already a set of enhancements to the current LTE/4G architecture to support these services. However, still in its infancy, the proposed solutions are envisioned for short-term market deployments and for a limited set of service categories (i.e public safety services). As a first contribution of this thesis, the proposed Distributed ProSe Architecture enhances the current ProSe architecture for a longer term deployment perspective of D2D-based services. On the basis of this enhanced architecture, vehicular communications and related services are further investigated as a specific implementation of ProSe as well as a new market opportunity for mobile operators. The CVS (Cellular Vehicular Services) solution is then introduced as an architecture framework that enables the integration of vehicular networks into mobile operators’ network infrastructure. A mobile network clustering algorithm and D2D relay-based communication mechanisms are used in the solution design in order to optimize the use of both core and radio network resources. Performance evaluation through analytical modeling and simulations are also carried out to validate the proposed contributions
Read more
16

Securing wireless sensor and vehicular networks / Sécurité des réseaux de capteurs et des communications véhiculaires

Ben Jaballah, Wafa 08 January 2014 (has links)
Les Réseaux de Capteurs Sans Fils (RCSFs) et les réseaux véhiculaires sont de plus en plus répandus, et déployés dans des domaines d’applications variés tels que la santé, la surveillance environnementale, les applications d’alerte d’accident, et les applications militaires. Cependant, ces réseaux peuvent être sujets à des attaques, ce qui empêche leur utilisation à grande échelle. Cette thèse étudie la sécurité des communications pour les réseaux de capteurs sans fils, et les communications inter-véhiculaires. Dans ce but, nous abordons quatre aspects importants. La première étude porte sur l’authentification des messages diffusés dans les réseaux de capteurs. Nous nous concentrons sur les principaux schémas à base de divulgation de clés d’authentification. Nous démontrons que le délai de divulgation de clé induit un délai d’authentification, ce qui pourrait conduire à une attaque de mémoire de déni de service. Nous proposons ensuite deux protocoles d’authentification de la source dans les RCSFs, pour surmonter la vulnérabilité des solutions existantes. Les schémas proposés garantissent la gestion efficace de la mémoire tampon du récepteur, en utilisant un mécanisme d’authentification par niveau, et une structure de Filtre de Bloom afin de réduire le coût de communication. Ensuite, nous validons nos protocoles en utilisant l’outil de vérification AVISPA, et nous les évaluons avec des expérimentations dans l’environment TinyOS. Nous confirmons que ces protocoles fournissent un service d’authentification de la source tout en respectant les contraintes de RCSFs. La seconde étude porte sur le problème de stockage au niveau des capteurs. Nous considérons en particulier l’attaque d’authentification différée “Delayed Authentication Compromise” (DAC) dans les RCSFs, qui permet à un attaquant d’utiliser une clé déjà divulguée pour signer d’autres messages. Nous montrons d’abord que les systèmes récemment proposés qui sont résistants également à l’attaque DAC sont vulnérables aussi à deux types d’attaques: attaque de permutation de commandes (où un adversaire prétend “permuter” deux messages au fil du temps), et l’attaque de rejet de commandes (où un adversaire semble “cacher” un message envoyé par la station de base). Nous proposons ensuite une nouvelle solution d’authentification. Notre analyse montre que notre solution est efficace pour détecter à la fois l’attaque de permutation de commandes et l’attaque de rejet de commandes, — et en même temps — est plus efficace (en termes de communication et de calcul) que les solutions existantes. xxiDans la troisième étude, nous considérons le problème de la sécurité de la gestion des clés dans les réseaux de capteurs. Nous présentons de nouveaux schémas d’authentification à base de clés symétriques qui présentent un faible coût d’authentification et de communication. Nos systèmes sont construits en intégrant un mécanisme de réputation, un filtre de Bloom, et un arbre binaire de clés pour la distribution et la mise à jour des clés d’authentification. Nos schémas d’authentification sont efficaces en matière de communication et de consommation de l’énergie. La quatrième étude porte sur la sécurité des communications véhiculaires. Nous nous concentrons sur les applications d’alerte d’accident. Nous analysons les menaces pour un ensemble d’algorithmes. Nous démontrons que ces systèmes sont vulnérables à l’attaque d’injection d’une fausse position, à l’attaque de rejeu de message d’alerte, et à l’attaque d’interruption de message d’alerte. Ensuite, nous proposons des contre-mesures à ces menaces. Nous avons donc proposé une solution qui est à la fois rapide et sécurisée pour les applications d’alerte d’accident : Un algorithme rapide et sécurisé pour la diffusion des messages en multi-saut (FS-MBA). Enfin, nous confirmons l’efficacité et la faisabilité des différents protocoles en effectuant un ensemble de simulations sous le simulateur NS-2. / Wireless sensor and vehicular networks play an important role in critical military and civil applications, and pervade our daily life. However, security concerns constitute a potential stumbling block to the impeding wide deployment of sensor networks and vehicular communications. This dissertation studies communication security for Wireless Sensor Networks (WSNs), and vehicular communication. To this aim, we address four important aspects. The first study addresses broadcast authentication in WSNs. We focus on key disclosure based schemes. We demonstrate that key disclosure delay induces an authentication delay, which could lead to a memory DoS attack. We then propose two broadcastauthentication protocols for WSNs, which overcome the security vulnerability of existingsolutions. The proposed schemes guarantee the efficient management of receiver’s buffer, by employing a staggered authentication mechanism, and a Bloom filter data structure to reduce the communication overhead. We also validate our protocols under the AVISPA model checking tool, and we evaluate them with experiments under TinyOS. Our findings are that these protocols provide source authentication service while respecting the WSN constraints.The second study addresses the storage issue in WSNs, in particular the Delayed AuthenticationCompromise attack (DAC). We first demonstrate that recently proposed schemes, which also address the DAC issue are vulnerable to two kinds of attacks: switch command attack (where an adversary pretends to “switch” two messages over time), and drop command attack (where an adversary just pretends to “hide” a message sent from the broadcaster). As a countermeasure against these attacks, we propose a new solution for broadcast authentication. Our analysis shows that our solution is effective in detecting both switch command and drop command attack, and—at the same time—is more efficient (in terms of both communication and computation) than the state of the art solutions.In the third study, we address key management security in WSNs. We present novel symmetric-key-based authentication schemes which exhibit low computation and communication authentication overhead. Our schemes are built upon the integration of a reputation mechanism, a Bloom filter, and a key binary tree for the distribution and updating of the auxviii thentication keys. Our schemes are lightweight and efficient with respect to communication and energy overhead. The fourth study addresses security in vehicular communications. We focus on fast multi hop broadcast applications. We analyze the security threats of state of the art vehicular based safety applications. We demonstrate that these schemes are vulnerable to the position cheating attack, the replay broadcast message attack, and the interrupting forwarding attack. Then, we propose countermeasures for these threats. We hence propose a complete solution which is both fast and secure in broadcasting safety related messages: Fast and Secure Multi-hop Broadcast Algorithm (FS-MBA). Finally, we confirm the efficiency and feasibility of our proposals using an extensive set of simulations under NS-2 Simulator.
Read more
17

Arquitectura de una Plataforma Telemática Integral para el Despliegue de Servicios Ubicuos en el Ámbito de los Sistemas Inteligentes de Transporte

Santa Lozano, José 27 March 2009 (has links)
La carrera por dotar a los vehículos de mayor seguridad y de comodidades hasta hace poco inimaginables, ha espoleado los avances en novedosos sistemas inteligentes de transporte, o intelligent transportation systems (ITS). De hecho, tal es la cantidad de líneas de trabajo y ámbitos de la ciencia que conforman los ITS, que la investigación se ha visto diversificada en gran medida en el último lustro. Uno de los campos que más interés procesa (si no el que más) es el de la telemática vehicular. Los nuevos servicios de a bordo englobados por la informática y las telecomunicaciones no paran de crecer en el ámbito científico, e incluso los modelos comerciales empiezan a incorporarlos en forma de sistemas de navegación integrados o mecanismos de tele-asistencia, por ejemplo.La tesis doctoral se encuadra dentro de este ámbito, mediante la definición de una plataforma integral para la provisión de servicios telemáticos tradicionales y de carácter ubicuo. La investigación puntual en los principales subsistemas de a bordo y del lado de la infraestructura, completa las piezas del puzzle que comprende un sistema de carácter genérico de despliegue de servicios ITS. La adecuación de un vehículo prototipo de referencia se ha enriquecido con una unidad de a bordo basada en un computador de propósito general, que incluye una propuesta de plataforma software modular basada en pasarela de servicios. El sistema de navegación toma como referencia a GPS, y explota las capacidades de los sistemas de aumento de señal, o satellite based augmentation systems (SBAS). De esta manera, se mejora la precisión y la disponibilidad, pero, sobre todo, se añade la funcionalidad necesaria para la monitorización de la integridad del sistema. La red vehicular cubre el hueco existente entre las soluciones poco flexibles basadas en redes de infraestructura, y las demasiado localizadas y distribuidas (VANET), mediante una arquitectura de comunicación overlay que funciona sobre unas resurgidas redes celulares. Finalmente, la plataforma se completa con un soporte remoto adicional de la infraestructura, para la definición de servicios pervasivos con capacidades de monitorización de la red viaria, procesamiento global, e inferencia descentralizada de información contextual adaptada a las preferencias de los usuarios. / Due to the growing interest that current society has in new technologies, new products in the fields of information and communication technologies are emerging in new environments still unexploited. In this way, vehicles are a perfect frame for installing a lot of useful functionalities traditionally available at work or home environments. However, this expansion needs a suitable hardware and software support adapted for the market and user demands. The on-board software architecture developed in the frame of the thesis covers some of these issues and acts as the basis for the rest of proposals presented in the work. Integration of telematics and vehicular communications in next-generation cars will turn the provision of contextual information into the cornerstone of vehicular services. In the world of intelligent transportation systems (ITS) such capability has a key role in the transmission of traffic incidences. Although there are multitude of solutions for the problem of sharing information between vehicles and between the vehicle and the infrastructure, none presents a valid general communication architecture for the notification, storage, management and provision of context-aware information on traffic and current location. The proposal given in the thesis offers a solution using an integrated vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication paradigm enriched with an information management system. The infrastructure manages all the collected safety hazards heard from vehicles and the interesting information to be provided to the user, and adapts these to the car's context and driver's preferences. Moreover, positioning requirements of this new generation of ITS services are continuously growing. New applications in the vehicular domain require positioning sensors with a high level of accuracy, availability, continuity and integrity. The proposed navigation and networking architectures are of special relevance in the thesis and, as it is explained, both of them imply novel designs not only in the vehicle, but also in the remote and road side support. In addition to the system design, a real vehicle prototype and the whole implementation of the system are presented. This test-bed has been also used to perform multitude of experimental evaluations, which demonstrate the suitability of the whole proposed platform.
Read more
18

Establishing security and privacy in WAVE-enabled vehicular ad hoc networks

Biswas, Subir 11 January 2013 (has links)
Security and privacy are among the growing concerns of a Vehicular Ad hoc Network (VANET) which requires a high degree of liability from its participants. In this dissertation, We address security, anonymity and privacy challenges of VANETs in the light of the IEEE standards for vehicular communications. VANET provides a variety of road-safety and other applications through wireless devices installed in vehicles and roadside infrastructure. A roadside infrastructure in VANET is generally public, and is prone to several different malicious attacks including node compromise, impersonation, and false message delivery attacks. Therefore, a user of a VANET must verify the integrity of a message that is delivered from a roadside infrastructure. On the other hand, a vehicle-originated message should be anonymous in order to ensure user-privacy in a VANET. However, a vehicle must not be able to take advantage of its anonymity for any misbehavior like sending false messages or malicious updates to other vehicles or a roadside infrastructure. We use proxy signature, identity-based signature, and elliptic curve cryptosystems to provide authentication for infrastructure generated messages, and anonymous authentication for vehicle originated messages. Authentication in a dense traffic condition is a challenge for a receiving entity as it incurs a processing delay at the receiving end. We address this issue with a dynamic approach that selectively verifies received messages based on a message's MAC-layer priority and a sender's information relevance. This approach makes a trade-off between priority and fairness in vehicular message authentication. We develop a network simulator to measure the impact of our authentication schemes over a WAVE protocol stack. Also, we investigate how some of the MAC-layer weaknesses may impair the security of a VANET. Our solutions are lightweight, bandwidth friendly and compatible to the current standards of vehicular communications.
Read more
19

Establishing security and privacy in WAVE-enabled vehicular ad hoc networks

Biswas, Subir 11 January 2013 (has links)
Security and privacy are among the growing concerns of a Vehicular Ad hoc Network (VANET) which requires a high degree of liability from its participants. In this dissertation, We address security, anonymity and privacy challenges of VANETs in the light of the IEEE standards for vehicular communications. VANET provides a variety of road-safety and other applications through wireless devices installed in vehicles and roadside infrastructure. A roadside infrastructure in VANET is generally public, and is prone to several different malicious attacks including node compromise, impersonation, and false message delivery attacks. Therefore, a user of a VANET must verify the integrity of a message that is delivered from a roadside infrastructure. On the other hand, a vehicle-originated message should be anonymous in order to ensure user-privacy in a VANET. However, a vehicle must not be able to take advantage of its anonymity for any misbehavior like sending false messages or malicious updates to other vehicles or a roadside infrastructure. We use proxy signature, identity-based signature, and elliptic curve cryptosystems to provide authentication for infrastructure generated messages, and anonymous authentication for vehicle originated messages. Authentication in a dense traffic condition is a challenge for a receiving entity as it incurs a processing delay at the receiving end. We address this issue with a dynamic approach that selectively verifies received messages based on a message's MAC-layer priority and a sender's information relevance. This approach makes a trade-off between priority and fairness in vehicular message authentication. We develop a network simulator to measure the impact of our authentication schemes over a WAVE protocol stack. Also, we investigate how some of the MAC-layer weaknesses may impair the security of a VANET. Our solutions are lightweight, bandwidth friendly and compatible to the current standards of vehicular communications.
Read more
20

Wireless communication in vehicles

Herbert, Steven John January 2015 (has links)
There is an increasing interest in the deployment of wireless communication systems in vehicles. The motivation for this work is to provide a fundamental characterisation of the in-vehicle Electromagnetic (EM) wave propagation environment, and to demonstrate how this can be used to aid the deployment of wireless communication systems in vehicles. The fundamental characterisation of the in-vehicle EM wave propagation environment presented in this dissertation yields a number of useful outcomes. The instantaneous impulse response of the in-vehicle channel is characterised, which is presented in the form of a statistical model for arriving rays. Noticing that it is impractical to undertake a full statistical characterisation of the time-varying impulse response, the time variation of the in-vehicle channel is instead characterised as a Doppler spread. This approach provides parameters which are sufficient to perform an information theoretic analysis to lower bound the capacity of the in-vehicle channel. For typical operating conditions, it is found that the channel capacity is approximately equal to that of the same channel with perfect channel state information available at the receiver. Having established the fundamental EM wave propagation characteristics for a single in-vehicle wireless channel, the EM properties of the cavity itself are characterised. This is achieved through a thorough investigation into the analogy between vehicle cavities and reverberation chambers, specifically considering the quality factor (and hence time constant), EM isolation, and electric field uniformity of typical vehicle cavities. This approach yields the important insight that the root mean square delay spread is approximately the same for all wireless links in a typical vehicle cavity. Also, that the angular spread of energy received at any given location (away from the cavity boundaries) is approximately uniform, and that over short distances the coherence distance is well defined, and hence Multiple Input Multiple Output antenna arrays should work well in vehicles. To what extent a typical wireless system can exploit this characterisation depends on how well the parameters can be estimated by a typical wireless communication system. This is also addressed, specifically investigating the estimation of the cavity time constant, and channel time variation. It is found that both of these can be estimated well using a typical wireless sensor network system.
Read more

Page generated in 0.3322 seconds