• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 11
  • 11
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude théorique et expérimentale de la propulsion électrohydrodynamique dans l'air

Monrolin, Nicolas 20 September 2018 (has links) (PDF)
L’effet Biefeld-Brown, du nom de ses découvreurs dans les années 1920, désigne la force électrohydrodynamique (EHD) s’appliquant sur deux électrodes sous haute tension dans l’air. Si l’origine de cette force a pu faire l’objet de certaines spéculations, il est aujourd'hui admis qu’elle repose sur l’accélération par un fort champ électrique d’un volume d’air partiellement ionisé. Cet effet aussi appelé vent ionique intéresse diverses applications : contrôle actif d’écoulement, augmentation du transfert de chaleur par convection forcée, séchage de denrées alimentaires ou encore la propulsion. Cette thèse, présente une étude expérimentale, théorique et numérique du vent ionique dans une configuration modèle à deux électrodes parallèles. Le faible rendement du vent ionique l’a écarté des applications à la propulsion mais des expériences récentes menées en 2013 montrent qu’il permet d’atteindre un rapport poussée/puissance étonnement élevé. Nous montrons dans une première partie, à partir de mesures et de considérations aérodynamique générales que la poussée générée pourrait suffire à contrebalancer la force de traînée pour certains aéronefs ultra-légers. Ces mesures ont permis de quantifier la force EHD et sa dépendance avec la géométrie des électrodes. En outre, la meilleure configuration à deux collecteurs peut produire une poussée presque deux fois plus importante qu’une configuration avec un seul collecteur, à tension fixée. Ces premiers résultats ont été affinés dans un second temps par les mesures PIV qui ont permis la reconstruction de l’écoulement et du champ de force entre les électrodes. Les vitesses mesurées dépassent rarement 3 m/s, et la force volumique est de l’ordre de 10 N/m 3. L’origine physique de la configuration optimale à deux collecteurs a été éclaircie par la mise en évidence des structures de sillages et de leurs effets instationnaires. Par ailleurs, une analyse théorique générale de la force propulsive nous a permis de confirmer sa dépendance explicite avec le rapport courant sur mobilité ionique. Le courant étant directement lié à la physique de la décharge couronne, la seconde partie de la thèse s’est concentrée sur son analyse théorique et numérique. Une analyse asymptotique a ainsi permis de trouver une expression analytique du champ électrique critique et de la caractéristique courant-tension permettant de connaître l’influence de la densité du gaz et de sa composition sur le courant produit dans des électrodes concentriques. Cette approche asymptotique a été associée à une formulation de décomposition de domaine dans le cadre d’une discrétisation par éléments finis pour analyser des configurations plus générales. Une résolution itérative du système d’équations stationnaires non-linéaire couplées par méthode de Newton est proposée, testée et validée. Cette méthode peut être étendue à des géométries plus complexes, permettant ainsi d’obtenir une condition d’injection des charges prenant en compte la physique complexe de la décharge.
2

Etude, caractérisation et amélioration d'un actionneur plasma : application au contrôle de la transition d'une couche limite de Blasius

Joussot, Romain 07 December 2010 (has links) (PDF)
Le contrôle actif d'écoulement est une voie envisagée actuellement pour améliorer les caractéristiques aérodynamiques des véhicules aériens ou terrestres. La diminution de la traînée (force opposée au mouvement) est notamment visée, ce qui permettrait de baisser la consommation en énergie entraînant ainsi une réduction des émissions polluantes. Depuis une dizaine d'années, les actionneurs plasmas sont utilisés comme dispositifs de contrôle. À Orléans, ils sont basés sur l'utilisation d'une décharge à barrière diélectrique créant à sa surface un plasma qui induit un écoulement de quelques km h-1 : le vent ionique. L'actionneur plasma est caractérisé avec l'étude des différents régimes de décharge. Celui où des arcs énergétiques apparaissent est analysé. La température de surface de l'actionneur est également étudiée en fonction de plusieurs paramètres. Elle reste inférieure à 100 °C, ce qui confirme que les effets des actionneurs plasmas sur un écoulement ne sont dus qu'au vent ionique. Une caractérisation du vent ionique permet aussi de confirmer le lien entre le vent ionique et l'extension du plasma : deux phases distinctes existent, pendant lesquelles il est créé. Le contrôle de la transition d'une couche limite de Blasius est effectué sur une géométrie de type plaque plane. En fonction de la position de l'actionneur ou de la puissance consommée, le recul, le déclenchement précoce ou le cas sans effet est obtenu. Le mécanisme d'action est identifié et est lié à une excitation de l'écoulement qui devient plus ou moins sensible aux ondes de Tollmien-Schlichting. La fréquence de fonctionnement de l'actionneur apparaît comme le paramètre principal pour ce type de contrôle. Une nouvelle géométrie d'actionneur est proposée et caractérisée. La décharge conserve des propriétés identiques au cas classique et le sondage du vent ionique par un moyen de mesure 3D permet de montrer le gain en vitesse et l'existence de structures 3D susceptibles de contrôler plus efficacement un écoulement.
3

Etude, caractérisation et amélioration d'un actionneur plasma : application au contrôle de la transition d'une couche limite de Blasius / Study, characterization and enhancement of a plasma actuator : application on transition control of a Blasius boundary layer

Joussot, Romain 07 December 2010 (has links)
Le contrôle actif d’écoulement est une voie envisagée actuellement pour améliorer les caractéristiques aérodynamiques des véhicules aériens ou terrestres. La diminution de la traînée (force opposée au mouvement) est notamment visée, ce qui permettrait de baisser la consommation en énergie entraînant ainsi une réduction des émissions polluantes. Depuis une dizaine d’années, les actionneurs plasmas sont utilisés comme dispositifs de contrôle. À Orléans, ils sont basés sur l’utilisation d’une décharge à barrière diélectrique créant à sa surface un plasma qui induit un écoulement de quelques km h-1 : le vent ionique. L’actionneur plasma est caractérisé avec l’étude des différents régimes de décharge. Celui où des arcs énergétiques apparaissent est analysé. La température de surface de l’actionneur est également étudiée en fonction de plusieurs paramètres. Elle reste inférieure à 100 °C, ce qui confirme que les effets des actionneurs plasmas sur un écoulement ne sont dus qu’au vent ionique. Une caractérisation du vent ionique permet aussi de confirmer le lien entre le vent ionique et l’extension du plasma : deux phases distinctes existent, pendant lesquelles il est créé. Le contrôle de la transition d’une couche limite de Blasius est effectué sur une géométrie de type plaque plane. En fonction de la position de l’actionneur ou de la puissance consommée, le recul, le déclenchement précoce ou le cas sans effet est obtenu. Le mécanisme d’action est identifié et est lié à une excitation de l’écoulement qui devient plus ou moins sensible aux ondes de Tollmien-Schlichting. La fréquence de fonctionnement de l’actionneur apparaît comme le paramètre principal pour ce type de contrôle. Une nouvelle géométrie d’actionneur est proposée et caractérisée. La décharge conserve des propriétés identiques au cas classique et le sondage du vent ionique par un moyen de mesure 3D permet de montrer le gain en vitesse et l’existence de structures 3D susceptibles de contrôler plus efficacement un écoulement. / Active flow control is a route currently being considered to improve aerodynamic performances of vehicles (airplanes or cars). Drag reduction (force opposite to motion) is particularly concerned and provides reduction of energy consumption of vehicles what induces low exhaust gases emissions. Plasma actuators are used as control devices since a decade. In Orléans, they are based on the use of surface dielectric barrier discharge which creates plasma on its surface and induces a flow of few km h-1 : the ionic wind. The plasma actuator is characterized with the study of different discharge regimes. One in which sparks occur is analyzed. The actuator surface temperature is also studied in function of several parameters. Surface temperature remains below 100 °C what confirms effects of plasma actuators on the flow are only due to the ionic wind. Characterization of ionic wind has also confirmed the link between induced flow and plasma spread over actuator surface : two distinct phases exist where a flow is every time induced. Transition control of a Blasius boundary layer is performed on flat plate geometry. Depending on plasma actuator position or power consumption, promotion, delay or neutral case are obtained on transition location. The mechanism of action is identified and linked to an excitation of the flow that becomes more or less sensitive to Tollmien-Schlichting waves. The operating frequency also appears as the main parameter for this type of control. New actuator geometry is proposed and characterized. The discharge keeps identical properties to a classical configuration of plasma actuator. Ionic wind measurements by means of a 3D device allow us to show the gain in speed and presence of 3D structures in the induced flow topology what is more effectively to control external flows.
4

Etude expérimentale du contrôle d'écoulements aérodynamiques subsoniques par action de plasmas froids surfaciques à pression atmosphérique

Magnier, Pierre 28 November 2007 (has links) (PDF)
Le contrôle actif des écoulements aérodynamiques est l'un des enjeux majeurs actuellement en aérodynamique afin de réduire la traînée, augmenter la portance, contrôler les instabilités. Dans ce contexte, l'objet de ce travail est d'utiliser des actionneurs plasmas en caractérisant leurs propriétés physiques et leurs effets sur des écoulements. Deux configurations ont été utilisées : les décharges surfaciques "couronne" et "à barrière diélectrique" (DBD). Des mesures électriques et optiques montrent que ces plasmas sont une succession de micro-décharges. Le "vent ionique" induit par ces actionneurs est instationnaire, de faible vitesse (quelques m/s) et fortement dépendant des configurations géométriques et électriques. Cette propriété mécanique a été utilisée pour modifier la couche limite se développant sur une plaque plane puis sur des profils d'aile. Une succession de DBD a permis de déclencher précocement la transition laminaire-turbulente de la couche limite. Les décollements de bord d'attaque de l'écoulement de profils ont été retardés voire supprimés. Enfin, de nouveaux types d'actionneurs sont développés : une DBD alimentée par une haute tension impulsionnelle et des jets de plasmas perpendiculaires à la paroi.
5

Etude de l'écoulement induit par une décharge à barrière diélectrique surfacique : contribution au contrôle des écoulements subsoniques par actionneurs plasmas

Boucinha, Vincent 10 December 2009 (has links) (PDF)
La réduction de la résistance à l'avancement par des techniques de contrôle active sera une nécessité d'importance croissante dans les années à venir pour le secteur des transports. Cette thèse fait partie d'une nouvelle voie de recherche consistant à utiliser des décharges plasmas à pression atmosphérique pour modifier les écoulements en vue d'améliorer les performances aérodynamiques (diminution de la traînée et augmentation de la portance). L'actionneur retenu est une décharge à barrière diélectrique surfacique avec un diélectrique composé d'une combinaison de deux matériaux polymères souples. L'écoulement induit par l'actionneur plasma, appelé vent ionique, est d'abord étudié expérimentalement dans l'air au repos en fonction du régime de la décharge. Une loi empirique liant la vitesse du vent ionique à la tension et à la fréquence de l'alimentation est proposée. De cette loi se dégagent une vitesse et une longueur caractéristiques utilisées pour prédire les principales propriétés du jet de paroi induit en aval de la décharge (lois d'échelle). L'efficacité de l'actionneur est ensuite testée en soufflerie subsonique pour trois configurations aérodynamiques de complexité croissante : couche limite laminaire non décollée (plaque plane), couche limite turbulente décollée (profil épais) et couche limite décollée 3D (corps de Ahmed, lunette inclinée à 25°). Des résultats significatifs tant sur le plan de la modification de la topologie de l'écoulement que de l'amélioration des efforts aérodynamiques sont obtenus pour des nombres de Reynolds jusqu'à 1,7.106 (35 m/s).
6

Etude de l'écoulement induit par une décharge à barrière diélectrique surfacique : contribution au contrôle des écoulements subsoniques par actionneurs plasmas / Study of the flow induced by a surface dielectric barrier discharge : contribution to subsonic airflow control by plasma actuators

Boucinha, Vincent 10 December 2009 (has links)
La réduction de la résistance à l’avancement par des techniques de contrôle active sera une nécessité d’importance croissante dans les années à venir pour le secteur des transports. Cette thèse fait partie d’une nouvelle voie de recherche consistant à utiliser des décharges plasmas à pression atmosphérique pour modifier les écoulements en vue d’améliorer les performances aérodynamiques (diminution de la traînée et augmentation de la portance). L’actionneur retenu est une décharge à barrière diélectrique surfacique avec un diélectrique composé d’une combinaison de deux matériaux polymères souples. L’écoulement induit par l’actionneur plasma, appelé vent ionique, est d’abord étudié expérimentalement dans l’air au repos en fonction du régime de la décharge. Une loi empirique liant la vitesse du vent ionique à la tension et à la fréquence de l’alimentation est proposée. De cette loi se dégagent une vitesse et une longueur caractéristiques utilisées pour prédire les principales propriétés du jet de paroi induit en aval de la décharge (lois d’échelle). L’efficacité de l’actionneur est ensuite testée en soufflerie subsonique pour trois configurations aérodynamiques de complexité croissante : couche limite laminaire non décollée (plaque plane), couche limite turbulente décollée (profil épais) et couche limite décollée 3D (corps de Ahmed, lunette inclinée à 25°). Des résultats significatifs tant sur le plan de la modification de la topologie de l’écoulement que de l’amélioration des efforts aérodynamiques sont obtenus pour des nombres de Reynolds jusqu’à 1,7.106 (35 m/s). / Active flow control is a key issue to meet the environmental requirements for the next generations of aircrafts and cars. The aim of this work is to study subsonic airflows control by plasma actuators in order to improve aerodynamic performances (drag reduction and lift enhancement). The actuator consists in using a surface dielectric barrier discharge with a thin dielectric made by a combination of two polymer materials. The first part of this work is dedicated to the experimental study of the flow induced by the actuator in quiescent air according to the regime of the discharge. An empirical law is proposed in order to determine the velocity of the ionic wind as a function of the high voltage and the frequency of the actuator. From this law the main properties of the wall jet induced by the discharge are predicted. In the second part of the study the actuator is used for wind tunnel experiments for three configurations of increasing complexity: laminar boundary layer (flat plane), separated turbulent boundary layer (wing profile) and 3D separated boundary layer (Ahmed body with rear window tilted at 25°). Significant results are obtained for Reynolds numbers up to 1.7.106 (35 m/s).
7

Etude d'une décharge à barrière diélectrique surfacique. Application au contrôle d'écoulement autour d'un profil d'aile de type NACA 0012 / Study of a surface dielectric barrier discharge. Flow control applications over a naca0012 airfoil

Audier, Pierre 06 December 2012 (has links)
Dans un contexte de croissance du trafic aérien et dans le but de réduire la consommation de carburant ainsi que les émissions de polluants dans l’atmosphère, l’avion de demain se doit d’être plus respectueux de l’environnement. Dans un objectif d’optimisation de ses performances aérodynamiques,d’importantes activités de recherche sont menées dans le monde pour étudier de nouveaux dispositifs de contrôle actif des écoulements en temps réel. Depuis une dizaine d’années, l’utilisation de la décharge à barrière diélectrique surfacique comme actionneur plasma pour le contrôle d’écoulements suscite un intérêt grandissant. Ce type d’actionneur permet de créer un plasma non-thermique capable de générer un écoulement basse vitesse, appelé vent ionique, qui interagit avec l’écoulement naturel en proche paroi pour l’amener dans un état souhaité. Les études expérimentales présentées dans cette thèse portent, d’une part, sur la caractérisation de l’actionneur plasma sous atmosphère contrôlée pour étudier le rôle de l’azote et de l’oxygène sur le comportement de la décharge et d’autre part, sur l’évaluation des potentialités de cet actionneur à contrôler le décollement massif naissant au bord d’attaque d’un profil d’aile placé à forte incidence. Les résultats mettent en évidence l’importance du rôle joué par O2 dans l’amorçage des filaments de plasma et dans la production de vent ionique. Le taux de production d’ozone de l’actionneur plasma a été quantifié en fonction de la puissance électrique. Les essais en soufflerie, réalisés dans le cadre du projet européen PLASMAERO, montrent l’effet de la fréquence de pulsation du signal d’alimentation haute tension sur la réponse de l’écoulement décollé et des ses instabilités naturelles. Il est ainsi possible, pour le profil placé à des incidences au-delà de l’incidence de décrochage naturel, d’augmenter la portance du profil en supprimant le décollement ou en favorisant la formation de tourbillons portants à l’extrados du profil. / To reduce power consumption and pollutant emissions in the atmosphere due to the increase of aerial traffic jam, tomorrow’s plane must be environnement-friendly. To enhance aerodynamic airfoil performance, worldwide studies have been carried out to study reel time active flow control actuators. For a decade, the interest in using a dielectric barrier discharge for flow control is increasing. Such a discharge is able to create a non thermal plasma which can induce a low velocity airflow, called ionic wind, which interacts with natural flow close to the wall to change its behavior. Experimental studies detailled in this thesis can be divided in two parts. On one hand, plasma actuator caracterization is performed at atmospherical pressure to study the influence of oxygen and nitrogen on the discharge behavior. On the other hand, abilities of the actuator to control a massive flow separation at the leading-edge of an airfoil in a deep post-stall regime are investigated. Results underlines that plasma filaments ignition and ionic wind generation is mainly governed by O2. Besides, the ozone procution rate of the dischage is measured as a function of electrical power. Wind tunnel tests, performed in the PLASMAERO project, underline that separated air flow and its instabilities can be drive by the burst frequency of the high voltage signal. For a deep post-stall regime, a lift enhancement can by obtained by reattaching the air flow or inducing lifting vortexes on the wing upper surface.
8

Etude de décharges électriques dans l'air pour le développement d'actionneurs plasmas – Application au contrôle de décollements d'écoulements

Labergue, Alexandre 25 November 2005 (has links) (PDF)
L'actionneur « plasma » consiste en une décharge électrique établie dans l'air à pression atmosphérique à la surface d'un isolant. L'apport de quantité de mouvement induit par ces plasmas froids de surface, dû à la migration des ions soumis à la force de Coulomb et appelé "vent ionique", est utilisé ici pour modifier l'état collé ou décollé d'un écoulement. <br />Le travail réalisé est divisé en deux parties. <br />L'objectif de la première partie est de développer l'actionneur afin d'obtenir une décharge stable et homogène à travers deux exemples : la décharge couronne et la décharge à barrière diélectrique (DBD). La décharge couronne est obtenue en appliquant une haute tension, AC ou DC, entre deux fils placés à l'intérieur de rainures dans l'isolant. Le champ électrique moyen est de 8 kV/cm, pour un courant moyen de 1,5 mA/m pour une puissance électrique moyenne de 75 W/cm2. La DBD est obtenue en appliquant une haute tension alternative (plusieurs kV avec une fréquence allant de 100 à quelque kHz) entre deux électrodes placées de part et d'autre de l'isolant. Les mesures de vent ionique ont montré pour ces deux décharges une vitesse de 3 m/s environ à 1 mm au-dessus de la paroi.<br />Dans une seconde partie nous avons testé les performances de l'actionneur pour le contrôle d'écoulements. Des essais préliminaires à faible vitesse (< 2 m/s) ont montré la possibilité de recoller un écoulement et de contrôler les structures crées en aval à l'aide d'une décharge pulsée. A plus haute vitesse (´ 30 m/s), nous avons contrôlé l'état collé ou décollé d'un écoulement dans le cas d'une couche de mélange plane et d'un jet à section rectangulaire. Nous avons alors observés des modifications sur les propriétés du développement aval de l'écoulement, comme par exemple l'épaisseur de couche de mélange ou de vectorisation du jet. Par ailleurs, ces derniers travaux semblent indiquer que l'actionneur est plus efficace pour le décollement que le recollement et lorsque l'actionneur utilisé est la DBD.
9

Etude d'une décharge à barrière diélectrique surfacique. Application au contrôle d'écoulement autour d'un profil d'aile de type NACA 0012

Audier, Pierre 06 December 2012 (has links) (PDF)
Dans un contexte de croissance du trafic aérien et dans le but de réduire la consommation de carburant ainsi que les émissions de polluants dans l'atmosphère, l'avion de demain se doit d'être plus respectueux de l'environnement. Dans un objectif d'optimisation de ses performances aérodynamiques,d'importantes activités de recherche sont menées dans le monde pour étudier de nouveaux dispositifs de contrôle actif des écoulements en temps réel. Depuis une dizaine d'années, l'utilisation de la décharge à barrière diélectrique surfacique comme actionneur plasma pour le contrôle d'écoulements suscite un intérêt grandissant. Ce type d'actionneur permet de créer un plasma non-thermique capable de générer un écoulement basse vitesse, appelé vent ionique, qui interagit avec l'écoulement naturel en proche paroi pour l'amener dans un état souhaité. Les études expérimentales présentées dans cette thèse portent, d'une part, sur la caractérisation de l'actionneur plasma sous atmosphère contrôlée pour étudier le rôle de l'azote et de l'oxygène sur le comportement de la décharge et d'autre part, sur l'évaluation des potentialités de cet actionneur à contrôler le décollement massif naissant au bord d'attaque d'un profil d'aile placé à forte incidence. Les résultats mettent en évidence l'importance du rôle joué par O2 dans l'amorçage des filaments de plasma et dans la production de vent ionique. Le taux de production d'ozone de l'actionneur plasma a été quantifié en fonction de la puissance électrique. Les essais en soufflerie, réalisés dans le cadre du projet européen PLASMAERO, montrent l'effet de la fréquence de pulsation du signal d'alimentation haute tension sur la réponse de l'écoulement décollé et des ses instabilités naturelles. Il est ainsi possible, pour le profil placé à des incidences au-delà de l'incidence de décrochage naturel, d'augmenter la portance du profil en supprimant le décollement ou en favorisant la formation de tourbillons portants à l'extrados du profil.
10

Étude théorique et expérimentale de la propulsion électrohydrodynamique dans l'air / Theoretical and experimental study of electrohydrodynamic propulsion in air

Monrolin, Nicolas 20 September 2018 (has links)
L’effet Biefeld-Brown, du nom de ses découvreurs dans les années 1920, désigne la force électrohydrodynamique (EHD) s’appliquant sur deux électrodes sous haute tension dans l’air. Si l’origine de cette force a pu faire l’objet de certaines spéculations, il est aujourd'hui admis qu’elle repose sur l’accélération par un fort champ électrique d’un volume d’air partiellement ionisé. Cet effet aussi appelé vent ionique intéresse diverses applications : contrôle actif d’écoulement, augmentation du transfert de chaleur par convection forcée, séchage de denrées alimentaires ou encore la propulsion. Cette thèse, présente une étude expérimentale, théorique et numérique du vent ionique dans une configuration modèle à deux électrodes parallèles. Le faible rendement du vent ionique l’a écarté des applications à la propulsion mais des expériences récentes menées en 2013 montrent qu’il permet d’atteindre un rapport poussée/puissance étonnement élevé. Nous montrons dans une première partie, à partir de mesures et de considérations aérodynamique générales que la poussée générée pourrait suffire à contrebalancer la force de traînée pour certains aéronefs ultra-légers. Ces mesures ont permis de quantifier la force EHD et sa dépendance avec la géométrie des électrodes. En outre, la meilleure configuration à deux collecteurs peut produire une poussée presque deux fois plus importante qu’une configuration avec un seul collecteur, à tension fixée. Ces premiers résultats ont été affinés dans un second temps par les mesures PIV qui ont permis la reconstruction de l’écoulement et du champ de force entre les électrodes. Les vitesses mesurées dépassent rarement 3 m/s, et la force volumique est de l’ordre de 10 N/m 3. L’origine physique de la configuration optimale à deux collecteurs a été éclaircie par la mise en évidence des structures de sillages et de leurs effets instationnaires. Par ailleurs, une analyse théorique générale de la force propulsive nous a permis de confirmer sa dépendance explicite avec le rapport courant sur mobilité ionique. Le courant étant directement lié à la physique de la décharge couronne, la seconde partie de la thèse s’est concentrée sur son analyse théorique et numérique. Une analyse asymptotique a ainsi permis de trouver une expression analytique du champ électrique critique et de la caractéristique courant-tension permettant de connaître l’influence de la densité du gaz et de sa composition sur le courant produit dans des électrodes concentriques. Cette approche asymptotique a été associée à une formulation de décomposition de domaine dans le cadre d’une discrétisation par éléments finis pour analyser des configurations plus générales. Une résolution itérative du système d’équations stationnaires non-linéaire couplées par méthode de Newton est proposée, testée et validée. Cette méthode peut être étendue à des géométries plus complexes, permettant ainsi d’obtenir une condition d’injection des charges prenant en compte la physique complexe de la décharge. / The Biefeld-Brown effect, named after its discoverers in 1920s, stands for the electrohydrodynamic (EHD) force applied on two high voltage electrodes in air. The origin of this force has been subject to controverse, but it is establised that it relies on the acceleration of ionized air by a strong electric field. Numerous applications are associated with ionic wind : active flow control, heat transfer enhancement, food drying or even propulsion. At the first glance, the low efficiency is unattractive for propulsion. However recent experiments highlighted a surprisingly high thrust/power ratio. This PhD research aimed to better understand the phenomena, through experiments and theoretical or numerical analysis. First, an experimental study was carried out to quantify the EHD force and its variations with the geometry of the electrodes. For instance, the best position of two collecting electrodes could produce nearly twice more thrust than the one collector configuration, for a given applied voltage. Considering the mass and the aerodynamic of some already existing very light aircrafts, it is shown that the produced thrust could at most balance the aerodynamic drag. This first results were enhanced by PIV measurements, which gave deeper insight into the flow and the force field between the electrodes. The air speed recorded was at most around 3 m/s, while the volumetric force of the order of 10 N/m3. The physical explaination of the optimal two collectors configuration relied partially on the wake flow structures and their unsteady effects. Then, a theoretical analysis of the propulsive force confirmed its explicit dependence on the current to mobility ratio. The discharge current being determined by the corona discharge physics, the second part of this work focuses on its theoretical and numerical analysis. An asymptotic approach of the corona discharge for concentric cylindrical electrodes led to an explicit expression of both the onset surface electric field and the current-voltage law as functions of the gas density, the effective ionization coefficient and the electrodes size. This asymptotic approach was reformulated in the frame of a domain decomposition method, implemented numerically with a finite elements discretization, in order to generalize the asymptotic approach. The iterative algorythm for the steady non-linear coupled system of equations is based on Newton method. This method provides a physically relevant boundary condition for the charge injection and can be applied to more complex geometries.

Page generated in 0.0883 seconds