• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structuration gravitationnelle en Relativité d'échelle

da Rocha, daniel 02 December 2004 (has links) (PDF)
La théorie de la Relativité d'échelle peut être utilisée pour contraindre des modèles dynamiques précis de systèmes gravitationnels. Dans un premier temps, l'objet de ce travail est d'explorer les possibilités théoriques liées aux diverses solutions de l'équation de Schrödinger généralisée (qui n'est autre que la forme prise par l'équation du mouvement dans un espace-temps fractal). Ces solutions théoriques sont alors utilisées pour modéliser la dynamique de plusieurs systèmes gravitationnels stationnaires. Nous analysons en détail : (i) la morphogenèse des vents stellaires, (ii) la dynamique du Groupe Local de galaxies et (iii) la dynamique des paires de galaxies dans l'univers proche. Une attention particulière a été portée sur l'élaboration d'un catalogue de paires de galaxies à partir d'un ensemble représentatif de sous-catalogues existant. L'ensemble des résultats montre l'existence de structures dans l'espace des phases en accord avec les diverses prédictions permises par la Relativité d'échelle. Nous concluons que l'utilisation des principes de la Relativité d'échelle permet de dévoiler et ainsi de mieux comprendre la dynamique des systèmes gravitationnels.
2

Simulations numériques de collisions de vents dans les systèmes binaires

Lamberts-marcade, Astrid 14 September 2012 (has links) (PDF)
L'objectif de cette thèse est de comprendre la structure des binaires gamma, binaires à collision de vents composées d'une étoile massive et d'un pulsar jeune. Ces binaires possèdent probablement une structure similaire aux binaires à collision de vents composées de deux étoiles massives, avec des particularités liées à la nature relativiste du vent de pulsar. L'interaction de deux vents supersoniques d'étoiles massives crée une structure choquée qui présente des signatures observationnelles du domaine radio aux rayons X. Plusieurs instabilités ainsi que le mouvement orbital des étoiles influent sur la structure choquée. Afin de comprendre leur impact, j'ai effectué des simulations à haute résolution de binaires à collision de vents à l'aide du code hydrodynamique RAMSES. Ces simulations sont numériquement coûteuses à réaliser, surtout lorsque un des vents domine fortement l'autre. A petite échelle, les simulations soulignent l'importance de l'instabilité de couche mince non-linéaire dans les collisions isothermes alors que l'instabilité de Kelvin-Helmholtz peut fortement modifier la structure choquée dans une collision adiabatique. A plus grande échelle, cette instabilité peut parfois détruire la structure spirale à laquelle on s'attend si la différence de vitesse entre les vents est trop importante. WR 104 est une binaire dont on observe la structure spirale grâce à l'émission de poussières. Les simulations de ce système montrent un bon accord avec la structure observée et indiquent que des processus de refroidissement du gaz sont nécessaires à la formation de poussières. Pour modéliser les vents de pulsar dans les binaires gamma, RAMSES a été étendu à l'hydrodynamique relativiste. J'utilise ce nouveau code pour réaliser des simulations préliminaires de binaires gamma. Elles montrent effectivement une structure similaire aux binaires stellaires, avec de légères corrections relativistes . Ce code est adapté à l'étude de divers systèmes astrophysiques tels que les jets relativistes, les sursauts gamma ou les nébuleuses de pulsar et fera partie de la prochaine version de RAMSES qui sera rendue publique.
3

Simulations numériques de collisions de vents dans les systèmes binaires / Numerical simulations of colliding winds in binary systems

Lamberts-Marcade, Astrid 14 September 2012 (has links)
L'objectif de cette thèse est de comprendre la structure des binaires gamma, binaires à collision de vents composées d'une étoile massive et d'un pulsar jeune. Ces binaires possèdent probablement une structure similaire aux binaires à collision de vents composées de deux étoiles massives, avec des particularités liées à la nature relativiste du vent de pulsar. L'interaction de deux vents supersoniques d'étoiles massives crée une structure choquée qui présente des signatures observationnelles du domaine radio aux rayons X. Plusieurs instabilités ainsi que le mouvement orbital des étoiles influent sur la structure choquée. Afin de comprendre leur impact, j'ai effectué des simulations à haute résolution de binaires à collision de vents à l'aide du code hydrodynamique RAMSES. Ces simulations sont numériquement coûteuses à réaliser, surtout lorsque un des vents domine fortement l'autre. A petite échelle, les simulations soulignent l'importance de l'instabilité de couche mince non-linéaire dans les collisions isothermes alors que l'instabilité de Kelvin-Helmholtz peut fortement modifier la structure choquée dans une collision adiabatique. A plus grande échelle, cette instabilité peut parfois détruire la structure spirale à laquelle on s'attend si la différence de vitesse entre les vents est trop importante. WR 104 est une binaire dont on observe la structure spirale grâce à l'émission de poussières. Les simulations de ce système montrent un bon accord avec la structure observée et indiquent que des processus de refroidissement du gaz sont nécessaires à la formation de poussières. Pour modéliser les vents de pulsar dans les binaires gamma, RAMSES a été étendu à l'hydrodynamique relativiste. J'utilise ce nouveau code pour réaliser des simulations préliminaires de binaires gamma. Elles montrent effectivement une structure similaire aux binaires stellaires, avec de légères corrections relativistes . Ce code est adapté à l'étude de divers systèmes astrophysiques tels que les jets relativistes, les sursauts gamma ou les nébuleuses de pulsar et fera partie de la prochaine version de RAMSES qui sera rendue publique. / The aim of this thesis is to understand the structure of colliding wind binaries composed of a massive star and a young pulsar, called gamma-ray binaries. They are expected to display a similar structure to colliding wind binaries composed of massive stars, with some particularities due to the relativistic nature of the pulsar wind. The interaction of the supersonic winds from massive stars creates a shocked structure with observational signatures from the radio domain to the X-rays. The structure is affected by various instabilities and by the orbital motion of the stars. To understand their impact, I carried out high resolution simulations of colliding wind binaries with the hydrodynamical code RAMSES. They are computationally demanding, especially when one of the winds strongly dominates the other one. Small scale simulations highlight the importance of the Non-linear Thin Shell Instability in isothermal collisions while the Kelvin-Helmholtz instability may strongly impact the dynamics of adiabatic collisions. I found that, at larger scales, this instability can destroy the expected large scale spiral structure when there is an important velocity gradient between the winds. WR 104 is a system that displays a spiral structure with important dust emission. The simulation of this system shows a good agreement with the observed structure and indicates cooling processes are necessary to enable dust formation. To model the pulsar wind in gamma-ray binaries, an extension of RAMSES has been developed, that incorporates relativistic hydrodynamics. I used this new relativistic code to perform preliminary simulations of gamma-ray binaries. They display a similar structure to colliding wind binaries with small relativistic corrections. We expect to use this code to perform large scale simulations of gamma-ray binaries. It will be part of the next public release of RAMSES and is suited for the study of many astrophysical problems such as relativistic jets, pulsar wind nebulae or gamma-ray bursts.
4

Formation des raies dans les vents des étoiles Ae/Be de Herbig

Bouret, Jean Claude 13 November 1998 (has links) (PDF)
Les étoiles Ae/Be de Herbig sont des étoiles pré-séquence principale de masse intermédiaire (2-5 M) présentant les signes d'une activité intense et de vents stellaires importants. L'origine de ces phénomènes reste mystérieuse car les mécanismes efficaces dans d'autres parties du diagramme HR sont, ici, inopérants. Nous avons étudié la formation des raies dans les vents de ces étoiles à l'aide d'un modèle semi-empirique à symétrie sphérique, les contraintes sur les paramètres libres du modèle étant alors déduites en comparant les spectres théoriques aux observations. Avec cette méthode, nous avons modélisé les raies de résonance de C IV et Mg II ainsi que les raies de Balmer et les continus de l'hydrogène, pour un échantillon représentatif d'étoiles. Nous avons pu confirmer que ces vents ont la même structure générale, et notamment une chromosphère à température modérée (T ~ 20 000 K). Nous obtenons des taux de perte de masse en très bon accord avec ceux déduits des observations radio. La quantité d'énergie dissipée dans le vent a été estimée par le calcul des pertes radiatives. Les valeurs obtenues sont supérieures à celles proposées par les modèles faisant intervenir des disques d'accrétion ou la rotation interne de l'étoile comme source d'énergie pour expliquer l'activité. La modélisation de la raie 1240 A de N V dans le vent d'AB Aur (prototype des étoiles Ae/Be de Herbig), observée avec le télescope spatial Hubble, nous a conduits à développer une méthode pour simuler la présence de globules chauds (T ~ 10 5 K) créés par des chocs, selon un modèle inspiré du vent solaire. Ce modèle nous permet également d'expliquer l'émission X observée par le satellite ROSAT. Les pertes radiatives occasionnées par ces globules sont supérieures à l'énergie cinétique du vent, ce qui montre que d'autres processus dissipatifs sont à l'oeuvre dans le vent de cette étoile. Ce travail constitue la première étape vers la prise en compte des écarts à la symétrie sphérique, révélés par la modulation rotationnelle de certaines raies du vent d'AB Aur. L'étude de la raie He l D3 a permis de poser les premières contraintes sur la physique à la base du vent d'AB Aur. Pour former une composante en émission décalée vers le bleu conforme aux observations, il est nécessaire de considérer des gradients de vitesse et des taux de perte de masse très élevés. Ce résultat montre que le vent d'AB Aur est fortement hétérogène, y compris dans les régions où il prend naissance. Il apparaît aussi que la composante en émission décalée vers le rouge de cette raie ne peut pas se former dans le vent mais qu'elle est vraisemblablement le résultat d'une accrétion de matière sur les pôles de l'étoile. Ces résultats représentent un ensemble de contraintes fortes, sur lequel il est désormais possible de s'appuyer pour mener à bien une étude théorique des vents des étoiles Ae/Be de Herbig.
5

Étude spectropolarimétrique du magnétisme des étoiles massives

Petit, Véronique 17 April 2018 (has links)
Cette thèse porte sur les grandes questions concernant le magnétisme des étoiles massives, c'est-à-dire les étoiles qui termineront leur vie par une supernova puisqu'elles sont plus massives que huit fois la masse de notre Soleil. Nous nous intéressons en particulier à l'effet d'un champ magnétique sur la structure et l'évolution de ces étoiles, ainsi qu'à l'origine de ce champ. En effet, les théories actuelles prédisent que la présence d'un champ magnétique chez une étoile massive aura une influence marquée sur son cheminement, par le biais d'une modification de la perte de masse et de la rotation, deux ingrédients clés de l'évolution stellaire. Nous avons entrepris un relevé spectropolarimétrique des étoiles massives appartenant à deux amas d'étoiles, l'amas de la nébuleuse d'Orion et l'amas de la nébuleuse de la Rosette, à l'aide de l'instrument ESPaDOnS installé au télescope Canada-France-Hawaii. Nous avons détecté trois étoiles magnétiques, dont deux nouvelles détections, toutes situées dans l'amas de la nébuleuse d'Orion. Nous avons évalué la fréquence du magnétisme pour chacun de ces amas, et déterminé que leurs fréquences d'étoiles magnétiques semblent être statistiquement différentes. La fréquence générale du magnétisme chez les étoiles massives, déterminée à partir de nos observations, est d'au moins 11%. À l'aide d'observations spectropolarimétriques, nous avons déterminé les caractéristiques magnétiques des étoiles de l'amas de la nébuleuse d'Orion, grâce à notre méthode de modélisation contemporaine basée sur les statistiques bayésiennes. Nous sommes donc en mesure d'obtenir une distribution des forces de champs magnétiques à la surface des étoiles OB de l'amas de la nébuleuse d'Orion. Cette distribution semble pointer vers deux populations distinctes, en accord qualitatif avec l'idée qu'un champ magnétique d'origine fossile ne peut survivre qu'au-dessus d'une certaine force. De plus, nous avons comparé cette distribution avec celle prédite par les modèles d'origine fossile des champs des étoiles à neutrons. Il semble que les étoiles massives ont, à première vue, assez de flux magnétique pour expliquer les champs magnétiques des pulsars. Nous avons de plus étudié l'effet de l'interaction d'un champ magnétique avec le vent radiatif généralement puissant présent chez les étoiles massives. Nous avons déterminé que les étoiles OB magnétiques ne montrent pas systématiquement d'émission en rayons X plus lumineuse, plus dure et plus variable que celle prédite par un vent non magnétique.
6

Sur les origines photosphériques des structures dans les vents des étoiles chaudes et lumineuses

Ramiaramanantsoa, Tahina 08 1900 (has links)
No description available.
7

Simulations Monte Carlo de régions d'interaction en corotation dans le vent d'étoiles chaudes

Carlos-Leblanc, Danny 06 1900 (has links)
No description available.
8

Modèle de vents galactiques destiné aux simulations cosmologiques à grande échelle

Côté, Benoît 17 April 2018 (has links)
Les vents galactiques sont des éléments importants à considérer dans les simulations numériques à grande échelle car ils ont des impacts sur la formation des galaxies environnantes. Puisque les galaxies sont mal résolues dans de telles simulations, les vents galactiques sont habituellement générés par des méthodes semi-analytiques. Dans le cadre de ce projet, un modèle galactique a été développé afin d'améliorer le modèle semi-analytique de Pieri et al. (2007). Ce nouveau modèle permet de suivre de manière consistante l'évolution de l'enrichissement des galaxies en tenant compte des vents stellaires, des supernovae et de différents scénarios de formation stellaire. Les vents galactiques sont générés par l'énergie thermique provenant des supernovae et des vents stellaires à l'intérieur des galaxies. Avec ce formalisme, seules les galaxies ayant une masse inférieure ou égale à 10¹⁰ MQ risquent de contribuer à l'enrichissement du milieu intergalactique. La distribution des vents galactiques dans ce milieu est calculée en respectant l'ordre chronologique des éjectas. De plus, la composition de ce vent peut désormais être décomposée en 31 éléments chimiques. Pour la même quantité d'étoiles formées durant l'évolution galactique, un taux de formation stellaire de longue durée produit un plus long vent galactique qu'un taux de formation stellaire de courte durée. Cependant, ce vent est alors moins dense et moins concentré en métaux. En augmentant l'efficacité de formation stellaire, la portée et la métallicité du vent galactique augmentent également. Par contre, dans certains cas, une trop grande quantité d'étoiles peut complètement balayer le milieu interstellaire de son gaz, ce qui altère l'évolution du vent galactique. Pour respecter la quantité de métaux observée dans le milieu intergalactique, les vents galactiques doivent provenir des galaxies ayant possédé une métallicité initiale différente de zéro au moment de leur formation. Dans ce cas et lors d'une collision galactique, les vents stellaires peuvent contribuer de manière significative au bilan énergétique et à la quantité de carbone et d'azote éjectée dans le milieu intergalactique.
9

Caractérisation et modélisation de l’évolution spectrale des étoiles naines blanches chaudes

Bédard, Antoine 07 1900 (has links)
Cette thèse présente une étude empirique et théorique approfondie de l'évolution spectrale des étoiles naines blanches, avec un accent particulier sur les naines blanches chaudes. La composition atmosphérique (et donc l'apparence spectrale) de ces cadavres stellaires peut changer drastiquement avec le temps à mesure qu'ils se refroidissent. Ce phénomène est généralement interprété comme le résultat d'une compétition entre divers mécanismes de transport des éléments dans l'enveloppe stellaire (tels que la diffusion, la convection, les vents et l'accrétion), mais demeure mal compris à plusieurs égards. Il est impératif de remédier à cette situation pour être en mesure d'exploiter le potentiel immense des naines blanches pour notre compréhension du passé de la Galaxie. Pour mieux caractériser l'incidence de l'évolution spectrale, nous effectuons tout d'abord une analyse spectroscopique exhaustive de près de 2000 naines blanches chaudes (Teff > 30,000 K) observées par le relevé SDSS. Nous déterminons les propriétés atmosphériques (notamment la température effective et la composition de surface) de ces objets à l'aide d'un nouvel ensemble de modèles d'atmosphère calculé spécifiquement à cet effet. En examinant la fréquence relative des étoiles riches en hydrogène et riches en hélium en fonction de la température, nous obtenons pour la première fois un portrait empirique détaillé de l'évolution spectrale des naines blanches chaudes. Plus spécifiquement, nous déduisons (1) qu'environ une étoile sur quatre arrive sur la séquence de refroidissement avec une atmosphère d'hélium, et (2) qu'environ deux tiers de ces objets développent ultérieurement une atmosphère d'hydrogène. En outre, nous accordons une attention particulière aux naines blanches hybrides (qui montrent à la fois des traces d'hydrogène et d'hélium) de notre échantillon et à ce que ces objets distinctifs nous apprennent sur l'évolution spectrale. Nous étudions ensuite l'évolution spectrale d'un point de vue théorique en modélisant les transformations chimiques qui s'opèrent dans les naines blanches. Pour ce faire, nous utilisons le code d'évolution stellaire STELUM, qui inclut un traitement cohérent et réaliste du transport des éléments et nous permet donc de réaliser les simulations numériques d'évolution spectrale les plus sophistiquées à ce jour. Nous modélisons la diffusion de l'hydrogène résiduel dans une enveloppe d'hélium à haute température, qui mène ultimement à la formation d'une atmosphère d'hydrogène. Nous simulons également le mélange convectif de cette couche superficielle d'hydrogène avec la couche sous-jacente d'hélium à basse température, qui produit à nouveau une surface dominée par l'hélium. En outre, nous étudions le transport du carbone dans les étoiles riches en hélium, incluant à la fois le tri gravitationnel à haute température et le dragage convectif à basse température. Ces calculs donnent lieu à plusieurs résultats astrophysiques d'intérêt. Nous obtenons notamment une contrainte inédite sur la quantité d'hydrogène résiduel contenue dans les naines blanches chaudes dominées par l'hélium. Nous démontrons aussi que la bifurcation observée dans le diagramme couleur-magnitude des naines blanches découvertes par le satellite Gaia est une signature du processus de mélange convectif à basse température. Par ailleurs, nos modèles fournissent de précieuses informations sur les propriétés des étoiles polluées par le carbone, en particulier sur leur masse et leur zone convective. Enfin, le résultat le plus important de cette thèse est la résolution définitive du problème le plus sérieux de la théorie de l'évolution spectrale, soit le problème de l'origine de l'hydrogène à la surface des naines blanches de type DBA. / This thesis presents an in-depth empirical and theoretical study of the spectral evolution of white dwarf stars, with a particular focus on hot white dwarfs. The atmospheric composition (and thus the spectral appearance) of these stellar remnants can change drastically over time as they cool. This phenomenon is generally interpreted as the result of an interplay between various element transport mechanisms in the stellar envelope (such as diffusion, convection, winds, and accretion), but remains poorly understood in several respects. It is imperative to remedy this situation to be able to exploit the immense potential of white dwarfs for our understanding of the past of the Galaxy. To better characterize the incidence of spectral evolution, we first carry out an exhaustive spectroscopic analysis of nearly 2000 hot white dwarfs (Teff > 30,000 K) observed by the SDSS survey. We determine the atmospheric properties (in particular the effective temperature and surface composition) of these objects using a new set of model atmospheres calculated specifically for this purpose. By examining the relative frequency of hydrogen-rich and helium-rich stars as a function of temperature, we obtain for the first time a detailed empirical picture of the spectral evolution of hot white dwarfs. More specifically, we infer (1) that about one in four stars enters the cooling sequence with a helium atmosphere, and (2) that about two-thirds of these objects eventually develop a hydrogen atmosphere. Furthermore, we pay special attention to the hybrid white dwarfs (which exhibit traces of both hydrogen and helium) in our sample and to what can be learned about spectral evolution from these distinctive objects. We then study spectral evolution from a theoretical point of view by modeling the chemical transformations that take place in white dwarfs. To do this, we use the stellar evolution code STELUM, which includes a consistent and realistic treatment of element transport and therefore allows us to perform the most sophisticated numerical simulations of spectral evolution to date. We model the diffusion of residual hydrogen in a helium envelope at high temperature, which ultimately leads to the formation of a hydrogen atmosphere. We also simulate the convective mixing of this superficial hydrogen layer with the underlying helium layer at low temperature, which once again produces a helium-dominated surface. Furthermore, we study the transport of carbon in helium-rich stars, including both gravitational settling at high temperature and convective dredge-up at low temperature. These calculations give rise to several astrophysical results of interest. In particular, we obtain an unprecedented constraint on the amount of residual hydrogen contained within hot helium-dominated white dwarfs. We also demonstrate that the bifurcation observed in the color-magnitude diagram of white dwarfs discovered by the Gaia satellite is a signature of the convective mixing process at low temperature. Furthermore, our models provide valuable information on the properties of carbon-polluted stars, in particular on their mass and convective zone. Finally, the most important result of this thesis is the definitive resolution of the most serious problem of the theory of spectral evolution, namely the problem of the origin of hydrogen at the surface of DBA-type white dwarfs.

Page generated in 0.1028 seconds