• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explorando superpixels para a segmentação semiautomática de imagens médicas para recuperação por conteúdo / Exploring superpixels to semi automatic medical image segmentation for content-based image retrieval

Barbieri, Paulo Duarte 03 June 2016 (has links)
Nesse trabalho foi desenvolvido o método VBSeg, um método de segmentação semiautomático de corpos vertebrais, que utiliza superpixels para aumentar a eficiência de técnicas de segmentação de imagens já estabelecidas na literatura, sem perder qualidade do resultado final. Experimentos mostraram que o uso de superpixels melhorou o resultado da segmentação dos corpos vertebrais em até 18%, além de aumentar a eficiência desses métodos, deixando a execução dos algoritmos de segmentação pelo menos 38% mais rápida. Além disso, o método desenvolvido possui baixa dependência do nível de especialidade do usuário e apresentou resultados comparáveis ao método Watershed, um método bem estabelecido na área de segmentação de imagens. Contudo, o método VBSeg segmentou 100% dos corpos vertebrais das imagens analisadas, enquanto que o método Watershed deixou de segmentar 44% dos corpos. / This work presents the development of a semiautomatic vertebral body segmentation method VBSeg, which uses superpixels to increase effi- ciency of well established image segmentation methods without losing quality. Experiments have shown motivating results with superpixels im- proving vertebral bodies segmentation in 18% and making segmentation algorithms at least 38% faster. Furthermore, our VBSeg method has low dependency on the level of expertise and got similar results to Watershed method, a well-established image segmentation method. However, VB- Seg method was able to segment 100% of the analyzed vertebral bodies while Watershed method missed 44% of those.
2

Explorando superpixels para a segmentação semiautomática de imagens médicas para recuperação por conteúdo / Exploring superpixels to semi automatic medical image segmentation for content-based image retrieval

Paulo Duarte Barbieri 03 June 2016 (has links)
Nesse trabalho foi desenvolvido o método VBSeg, um método de segmentação semiautomático de corpos vertebrais, que utiliza superpixels para aumentar a eficiência de técnicas de segmentação de imagens já estabelecidas na literatura, sem perder qualidade do resultado final. Experimentos mostraram que o uso de superpixels melhorou o resultado da segmentação dos corpos vertebrais em até 18%, além de aumentar a eficiência desses métodos, deixando a execução dos algoritmos de segmentação pelo menos 38% mais rápida. Além disso, o método desenvolvido possui baixa dependência do nível de especialidade do usuário e apresentou resultados comparáveis ao método Watershed, um método bem estabelecido na área de segmentação de imagens. Contudo, o método VBSeg segmentou 100% dos corpos vertebrais das imagens analisadas, enquanto que o método Watershed deixou de segmentar 44% dos corpos. / This work presents the development of a semiautomatic vertebral body segmentation method VBSeg, which uses superpixels to increase effi- ciency of well established image segmentation methods without losing quality. Experiments have shown motivating results with superpixels im- proving vertebral bodies segmentation in 18% and making segmentation algorithms at least 38% faster. Furthermore, our VBSeg method has low dependency on the level of expertise and got similar results to Watershed method, a well-established image segmentation method. However, VB- Seg method was able to segment 100% of the analyzed vertebral bodies while Watershed method missed 44% of those.

Page generated in 0.062 seconds