Spelling suggestions: "subject:"ertical velocity"" "subject:"certical velocity""
1 |
A LABORATORY INVESTIGATION OF THE NEAR-SURFACE VELOCITIES IN TORNADO-LIKE VORTICESWayne, Simon Patrick 03 August 2007 (has links)
No description available.
|
2 |
Sources de la variabilité interannuelle de la langue d'eau froide Atlantique / Sources of the Atlantic cold tongue interannual variabilityPlanton, Yann 10 November 2015 (has links)
La langue d'eau froide Atlantique est un refroidissement saisonnier qui affecte les eaux superficielles au sud de l'équateur entre les côtes africaines et 30°W environ, pendant la " saison froide " (entre mai et octobre). Ce phénomène se produit tous les ans, mais son intensité, sa durée, ainsi que son extension spatiale sont très variables d'une année sur l'autre. En dépit du couplage très marqué qui lie la langue d'eau froide et les premiers stades de la mousson africaine, les causes de cette variabilité interannuelle sont peu connues. Cette thèse a pour objectif de combler cette lacune en améliorant notre compréhension des processus océaniques contrôlant la variabilité interannuelle de la langue d'eau froide. Cette étude se focalise sur les événements " intenses" de la langue d'eau froide, correspondant à des refroidissements anormalement forts (faibles), précédés par des anomalies négatives (positives) de vent zonal. On se focalise ainsi sur les événements dits " canoniques ", les plus nombreux, et potentiellement similaires en terme de mécanisme. Cette classification, appliquée à une dizaine de réanalyses, permet de retenir, avec une robustesse certaine, cinq années dans chacune des classes. Ces événements sont étudiés grâce à des simulations numériques réalistes. L'utilisation de bilans de chaleur nous a permis d'accéder aux processus physiques qui contrôlent la formation des événements froids et chauds. Le mélange vertical à la base de la couche de mélange apparaît comme le processus fondamental de la variabilité interannuelle de la langue d'eau froide. Lors des événements froids, il accroît le refroidissement entre mars et juillet, alors que son rôle reste discret lors des événements chauds. Au milieu de l'été boréal, les anomalies de mélange vertical sont contrebalancées par des anomalies d'advection horizontale de signes opposés. Ainsi les événements froids comme chauds sont atténués en fin de saison. Cette thèse montre qu'il est plus pertinent de s'intéresser au flux d'énergie cinétique qui est plus directement lié à l'activation du mélange vertical, qu'à la tension de vent en surface. Le flux d'énergie cinétique semble d'autant plus pertinent qu'il joue aussi un rôle majeur lors des événements intenses " non-canoniques ", i.e. événements froids (chauds), précédés par des anomalies positives (négatives) de vent zonal. Enfin, la modulation de la vitesse verticale induite par le vent tend à ajuster i) la profondeur de la couche de mélange, ii) la pente de la thermocline, et iii) le cisaillement vertical de courant zonal. Ce sont des paramètres clés du mélange vertical et donc du taux de refroidissement. La vitesse verticale joue donc un rôle indirect dans l'établissement et la variabilité interannuelle de la langue d'eau froide. / The Atlantic cold tongue is a seasonal cooling of the sea surface temperature south of the Equator between the African coasts and around 30°W during the " cold season " (from May to October). The cooling occurs every year but its intensity, duration and spatial extent vary strongly from one year to another. In spite of the very strong coupling between the Atlantic cold tongue and the West African monsoon, the origin of the Atlantic cold tongue variability is not well described. This thesis aims at filling this gap by improving our understanding of the oceanic processes controlling the variability of the Atlantic cold tongue. This study focuses on " intense " Atlantic cold tongue events, defined by abnormally strong (weak) cooling, preceded by negative (positive) zonal wind anomalies. Thus " canonical " being studied, that are the most frequent and probably similar in terms of mechanisms. This classification is applied to ten reanalyses and allows to select with good confidence, five events in each group. These events are studied through realistic simulations. The use of on-line heat budget allows to identify the physical processes that control the formation of cold and warm events. Vertical mixing at the base of the mixed-layer is the fundamental process controlling the interannual variability of the cold tongue. During cold events, it increases the cooling between March and July, while it remains weak during warm events. During boreal summer, vertical mixing anomalies are balanced by horizontal advection anomalies of opposite sign. So cold and warm events are weakened at the end of the season. This thesis highlights that it is more appropriate to focus on the wind energy flux because it is more directly related to the activation of vertical mixing, rather than on the surface wind stress. The wind energy flux is relevant since it is also shown to play a major role during intense " non-canonical " events, i.e. cold (warm) events preceded by positive (negative) zonal wind anomalies. Finally, the modulation of the vertical velocity induced by the wind tends to adjust i) the mixed-layer depth, ii) the intensity of the thermocline, and iii) the vertical shear of the zonal current. These are key parameters of vertical mixing and therefore the cooling rate. Thus, vertical velocity plays an indirect role in the establishment and interannual variability of the Atlantic cold tongue.
|
3 |
Continuer à irriguer quand les lacs-réservoirs de barrage souffrent de taux de sédimentation sévères - Recommandations d'amélioration de la gestion du principal canal d'irrigation alimenté par l'ouvrage répartiteur de Canneau (Haïti)Louis, Stephen 27 June 2019 (has links) (PDF)
L’État haïtien, pour faire face à l’insécurité alimentaire que connaît sa population (à croissance rapide et à faible revenu), s’appuie particulièrement sur la Vallée du département de l’Artibonite qui constitue depuis toujours le véritable grenier agricole du pays, en fournissant, à elle seule, plus de 80% de la production rizicole nationale. Cette production agricole assure non seulement les besoins alimentaires de la population locale, mais également ceux particuliers des départements voisins (Ouest, Nord et Centre).L’irrigation de cette vaste plaine agricole (32400 ha de terres agricoles irrigables) est garantie, à plus de 75%, par le réseau d’irrigation établi en rive Gauche de l'ouvrage-partiteur de Canneau, alimenté par un Canal principal (CMRG) ayant un débit nominal de 40 m3/s.Néanmoins, ce Partiteur, source d’approvisionnement exclusive du CMRG, est lui-même régulé par le Barrage-réservoir de Péligre qui se trouve à 70 km plus en amont sur le fleuve de l’Artibonite. En termes hydrauliques, nos travaux ont d'abord examiné la situation du réservoir de Péligre. Alors qu'au moment de la construction il était initialement prévu d’y stocker 607 Mm3, il ne reste plus aujourd'hui qu'à peine 40% de cette capacité utile, en raison des dépôts sédimentaires qui se sont constitués année après année derrière le barrage.Cette sédimentation spectaculaire (due à l’érosion des bassins versants amont fort dégradés), combinée aux déficits pluviométriques, provoque en période d’étiage une rareté d’eau, des lâchers insuffisants et donc des déficits en eau utile envoyée en amont de ce Partiteur de Canneau. Cela impacte significativement le réseau d’irrigation aval, dont le CMRG. Nos travaux ont montré que la situation est d'autant plus critique que les débits eux-mêmes, en amont comme en aval du Partiteur, sont en fait très mal connus et devraient faire l'objet d'approches méthodologiques plus rigoureuses que celles déployées sur site actuellement.Aussi, face à ces constats, de nouvelles règles de distribution de l’eau s’imposent, pour continuer à irriguer et espérer obtenir un rendement agricole acceptable (souhaitable).Notre travail s'est ainsi donné pour objectif de contribuer à la mise en place des nouvelles règles de gestion de l’eau (répartition) au sein du réseau d’irrigation alimenté par le CMRG, pour continuer à fournir l’eau à l’irrigant en quantité acceptable (et connue). Cette amélioration de gestion a été envisagée à la fois en amont et en aval de ce réseau d’irrigation, particulièrement en ses différents nœuds-clés (Canal principal et Canal secondaire).La démarche méthodologique adoptée pour relever ce défi majeur s’appuie notamment sur un système d’information hydro-morpho-sédimentaire actualisé et de qualité. Il s’agit d’une base de données, riche en observations de hauteurs d’eau (lues aux stations limnimétriques), vitesses de surface au flotteur, champs de vitesse explorés au moyen d’un courantomètre et en données bathymétriques et granulométriques des tronçons des canaux étudiés, appréciées respectivement au moyen d’un GPS différentiel et du tamisage à sec.Les résultats fort encourageants obtenus permettent d'acquérir une meilleure compréhension du système et une amélioration particulière du réseau d’irrigation en rive gauche du Partiteur de Canneau. En s’appuyant sur les historiques de sédimentation du Lac-réservoir de Péligre (de 1960 à 2016), nous présentons un document de synthèse sur la sédimentation du Lac-réservoir de Péligre. Ce document met notamment en exergue le taux de sédimentation sévère de ce dernier (5.47 Mm3/an), qui continue d’augmenter encore aujourd’hui, ainsi que les conséquences de celui-ci sur les débits turbinés et la disponibilité de l’eau en amont du Partiteur de Canneau.Nous mettons également en évidence les formes irrégulières (Lit-non prismatique) des tronçons des canaux étudiés, via une vue axonométrique des profils en travers (issus de l’étude bathymétrique) des canaux d’irrigation en terre battue étudiés. Puis, nous présentons de manière détaillée le caractère très hétérogène des dépôts sédimentaires de ces derniers, à partir d’une analyse des représentations en Log-Probit des résultats du tamisage, construites au moyen du logiciel GrandPlots.En nous appuyant sur les mesures expérimentales des contraintes de Reynolds et des profils instantanés de vitesse (pris à intervalle de 64 ms), tirés de la base de données EPFL, nous avons montré qu’il faut absolument travailler dans les 18% inférieurs de la colonne d’eau (z/h<0.18) et en mode déficitaire, dans un écoulement turbulent comme celui-là, pour extraire de façon représentative et pertinente une pente expérimentale u*/, comme indicateur de u*.À l’issue d’un examen détaillé de la distribution verticale de la vitesse au canal secondaire FNE, nous validons un DMLWL (Dip-Modified-log-wake-law) à la fois en amont et en aval du réseau. Nous montrons que ceci permet de modéliser le Dip-phenomenon observé systématiquement au sein des profils explorés in situ. Nous proposons une relation entre le coefficient d’inégale répartition de la vitesse à la verticale αv (de Prony) et l’aspect ratio (W/h) pour tout le réseau d’irrigation étudié ;ceci afin d’obtenir une vitesse débitante (Ū), simplement à partir d’une prise de vitesse au flotteur, dans l’axe central d’écoulement.À partir des débits quantifiés à la section de référence du CMRG, via l’équation de continuité (Q=AŪ), nous fournissons un Abaque, diagramme à 3 entrées (débit (Qp), charge amont (H0) et ouverture de vanne (hv)), permettant aux vanniers de connaitre les débits au pont de fer correspondant aux différentes ouvertures de vanne et celui pour lequel le trop-plein (retour des eaux excédentaires vers le fleuve de l’Artibonite) commence à fonctionner.À l’égard des opérateurs locaux et gestionnaires du système, nous mettons enfin à disposition, des méthodes/outils simples et efficaces leur permettant de quantifier finement le débit au Canal principal en amont ainsi qu’au canal secondaire en aval, simplement à partir d’une mesure de hauteur d’eau (h) et de vitesse de surface au flotteur (Us). / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0735 seconds