• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 3
  • Tagged with
  • 88
  • 88
  • 88
  • 25
  • 23
  • 18
  • 16
  • 15
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Study of the arbuscular mycorrhizal fungus Glomus intraradices at the molecular level

Ubalijoro, Eliane. January 2000 (has links)
Arbuscular mycorrhizal (AM) fungi have been living in association with land plants for at least 400 million years. Because they are obligate symbionts, the study of AM symbiosis has focused primarily on its plant host and progress in the molecular biology of AM fungi has been very slow. Using two different approaches, library screening and direct PCR-based assays, genetic information of AM fungi was compared across isolates and species. This allowed the study of novel DNA regions previously unexplored in AM fungi. The following species were investigated: Glomus intraradices, Glomus mosseae, Gigaspora margarita, Scutellospora calospora, Acaulospora scrobiculata and Entrophosphora colombiana. In the first approach, using in vitro grown G. intraradices, a DNA extraction protocol was developed for the construction of a partial genomic library. This library was screened for the presence of microsatellite-containing loci. PCR primers were designed based on five identified loci. Two of these loci were monomorphic for all isolates and species. The second approach used a combination of degenerate and specific primers for fungal chitin synthase genes to explore the variability of this gene family in AM fungi. A total of 21 AM sequences were isolated and sequenced, covering class I and II chitin synthases. RT-PCR with G. intraradices revealed differential expression of chitin synthases in spores and mycelium, as compared to mycorrhized roots. In addition, using primers designed from a highly conserved sequence for plant resistance genes, classical PCR and RT-PCR allowed the detection of a genomic sequence and its cDNA counterpart encoding a putative serine/lysine rich protein in G. intraradices. We have thus investigated genetic variability in AM fungi in functional genes as well as in repetitive DNA regions. Study of gene expression was also possible using in-vitro grown G. intraradices.
32

Vesicular-arbuscular mycorrhizal efficiency on apple rootstocks : effects of genotypes and herbicides

Morin, France, 1963- January 1993 (has links)
There has been little research into the compatibility of commonly utilized apple rootstocks and VA-fungal types, and even less research regarding the effects of herbicides used in orchards, on the VAM symbiosis of apple trees. Studies demonstrated that early inoculation of young apple plants, prior to transplanting, results in healthy and vigorous plants with better growth and nutrition than uninoculated plants. We studied the efficiency of VA-fungal species and isolates on young apple rootstocks, produced by in vitro propagation. Mycorrhizal inoculation promoted plant growth, dry mass production and leaf P concentration. Mycorrhizal efficiency was associated with larger external hyphal network but showed no relation with the internal colonization. Despite the high P-fertility of the soil used, growth enhancement due to mycorrhizal inoculation was attributed to an improved P nutrition. / In a second experiment, the effect of herbicides currently used in orchards was tested on the mycorrhizal symbiosis. Paraquat, simazine and dichlobenil were applied to soil with mycorrhizal and non-mycorrhizal apple plants. Mycorrhizae increased herbicide toxicity in apple, as demonstrated by the greatly increased plant mortality. While both paraquat and simazine decreased spore germination in vitro, none of the herbicide treatments affected root colonization in soil. Effects on the photosynthetic rate, measured after herbicide application, indicated a physiological interaction between mycorrhizal colonization and dichlobenil, involved in the toxic response of apple plants.
33

Plant-fungal interactions during vesicular-arbuscular mycorrhiza development : a molecular approach / Phillip James Murphy.

Murphy, Phillip James January 1995 (has links)
Bibliography: leaves 153-185. / [ix], 200, [29] leaves, [6] leaves of plates : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Vesicular-arbuscular (VA) mycorrhiza formation is a complex process which is under the genetic control of both plant and fungus. This project aims to develop a model infection system in Hordeum vulgare L. (barley) suitable for molecular analysis; to identify host plant genes differentially expressed during the early stages of the infection process; and to screen a mutant barley population for phenotypes which form abnormal mycorrhizas. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1995
34

Roles of mycorrhizal symbiosis in growth and phosphorus nutrition of wheat in a highly calcareous soil.

Li, Huiying January 2005 (has links)
The overall objective of the work presented in this thesis was to investigate roles of arbuscular mycorrhizal ( AM ) fungi in growth and phosphorus ( P ) nutrition of wheat ( Triticum aestivum L. ) in a highly calcareous soil from the Eyre Peninsula, South Australia. The soil used for this study is one of the main soil types used for wheat production in South Australia. It is severely P - deficient, but plant responses to conventional fertiliser application are poor. Although the total P and Colwell - extractable P contents of the soil are high, the resin - extractable P content is very low. Resin - extractable P is better able to predict P availability for plant growth than Colwell - extractable P. The soil is also strongly P - fixing. Moderate levels ( about 20 mg kg [superscript minus 1] ) of resin - extractable P for wheat could only be achieved by adding high rates ( up to 100 mg kg [superscript minus 1] ) of CaHPO4 in this soil. A bioassay with wheat showed that it can be highly colonised by AM fungi in the soil. AM fungi have been shown to improve P nutrition of plants, particularly in nutrient poor soils. They may thus be important for wheat grown in the soil with low amounts of plant - available P such as the one used. The first part of the work involved conventional pot experiments. Effects of AM fungi on wheat were compared between sterilised soil and non - sterile soil, sterilised soil inoculated with non - sterile soil or with Glomus intraradices or noninoculated, with different soil / sand mixes. Colonisation of wheat at 8 weeks was high, with about 75 % of root length colonised for indigenous fungi and 55 % for Glomus intraradices, regardless of the soil treatments. Growth and P uptake of wheat were significantly increased by both indigenous fungi and G. intraradices, irrespective of soil / sand mixes. Effects of indigenous fungi on plant growth were larger in sterilised and inoculated soil than in non - sterile soil. In sterilised soil, increases of plant growth by AM fungi were higher with G. intraradices than with indigenous fungi. Dilution of the soil by mixing with sand reduced plant growth and P uptake of both AM and non-mycorrhizal ( NM ) plants. In another experiment, responses of wheat to AM fungi and P supply were compared with those of clover. Plants were inoculated with four different AM fungi. Colonisation of wheat was lower than clover. Although suffering from P deficiency, NM wheat ( 6 weeks ) grew relatively well with no added P ( P0 ) and application of P at 100 mg kg [superscript minus 1] ( P100 ) increased the dry weight ( DW ). Shoot P concentrations increased with P application and there were positive effects of all AM fungi at P100. In contrast, NM clover ( 8 weeks ) grew very poorly at P0 and did not respond to P application. Clover responded positively to all AM fungi at both P levels, associated with increases in P uptake. The results showed that responses of wheat to AM inoculation and P supply were quite different from those of clover, and emphasized the different abilities of the two species to access P in the very high P - fixing soil used. Responses of two wheat cultivars ( Brookton and Krichauff ) to AM fungus ( G. intraradices ) were also evaluated with different P supplies at two developmental stages ( vegetative and maturity ). Colonisation by G. intraradices of both cultivars was well established at 6 weeks ( ~ 50 % in P0 plants ) and continued to increase up to maturity ( ~ 70 % ), but decreased greatly at both harvests as P supply was increased ( up to 150 mg P kg [superscript minus 1] ). Addition of P significantly increased plant growth, grain yield and P uptake irrespective of cultivar and harvest time, and the optimum soil P for grain yield was 100 mg kg [superscript minus 1]. In both cultivars, a growth depression in AM plants occurred at 6 weeks at all P levels, but this disappeared at 19 weeks with added P. At P0, AM plants produced lower grain yield per plant, but with higher P supply, AM plants produced higher grain yields than NM plants. There was a significant positive effect of AM on grain P concentration at P0, but not at other P levels. Brookton was somewhat more P efficient than Krichauff, and the latter responded more to AM fungi. The results showed that responses of wheat to AM fungi and P supply changed during development. Growth depression induced by AM fungi in low P soil was overcome by addition of moderate amounts of P, resulting in significant increases in grain yield in AM plants. Additional approaches were used to help determine the roles of AM fungi in wheat growth and nutrition. The effects of plant density were tested, as it was expected that increasing density might decrease the negative effects of AM fungi on wheat growth. Large growth depressions were induced by both G. intraradices and Gigaspora margarita in wheat grown at low density, although % colonisation by G. intraradices was higher than by Gi. margarita. With increasing plant density, the growth depressions were smaller, indicating that competition modulates growth responses. Although there may be effects due to competition for soil P, it is clear that with increasing plant biomass per unit soil volume, the AM fungal biomass did not increase in proportion ; in fact, hyphal length density decreased. Accordingly, costs of AM in terms of organic carbon loss per plant decreased with increasing plant density, thus mitigating the growth depression. The results add to the increasing body of evidence that mycorrhizal growth responses of plants grown singly may not apply at the population or community level as in crops. Two compartmented pot systems were used to examine whether the fungal hyphae deliver the P into the plants even in the absence of positive growth responses. An experiment in which plants were constricted in a mesh bag, but hyphae of AM fungi could explore a large soil volume was carried out. Results suggested that AM fungi helped the plants acquire P, although mesh bags did not remove AM growth depression. The experiments in which AM fungi were supplied with [superscript 32]P in a small soil compartment to which only hyphae had access showed that a considerable amount of P was delivered to wheat plants via AM fungi. The original aim was to calculate the percentage of total P entering the plants via the AM pathway. However, realistic values were not obtained probably because of difficulties of determining plant-available P and uneven distribution of hyphae in the soil. It is also possible that plants and AM fungi access different P pools. This study demonstrated the potential roles of AM fungi in growth and P nutrition of wheat grown in the highly calcareous soil from the Eyre Peninsula, South Australia. Further studies on the effects of the interactions between AM fungi and wheat in the field are needed to assess the contribution of AM fungi to plant nutrition. / Thesis (Ph.D.)--School of Earth and Environmental Sciences, 2005.
35

Plant-fungal interactions during vesicular-arbuscular mycorrhiza development : a molecular approach /

Murphy, Phillip James. January 1995 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Plant Science, 1996? / Includes bibliographical references (leaves 153-185).
36

The [beta]-tubulin gene as a means to discriminate species and verify evolutionary patterns of arbuscular mycorrhizal fungi

Msiska, Zola. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains ix, 138 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 105-119).
37

Investigation on selected biotic and abiotic factors in the maintenance of the "fairy circles" (barren patches) of southern Africa

Joubert, Angelique. January 2008 (has links)
Thesis (M.Sc.)(Plant Science))--University of Pretoria, 2008. / Includes bibliographical references.
38

Mycorrhiza re-establishment on post mined rehabilitated areas of the Brand se Baai Succulent Karoo vegetation /

Ndeinoma, Albertina. January 2006 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
39

Expressions of transporters of arsenite and phosphate in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi

Chen, Xunwen 01 January 2012 (has links)
No description available.
40

Status and molecular identification of arbuscular mycorrhizal (AM) fungi associated with Acacia spp. on rehabilitated gold and uranium mine tailings

Buck, Michelle Toni 04 February 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. / Phytoremeditation of mine tailings provides the most cost-effective means of alleviating their pollutant effects. Research has shown that successful revegetation of mine tailings can be optimised by providing appropriate microbial symbionts for the plants. The aim of this study was to assess the arbuscular mycorrhizal (AM) status of trees currently being used for phytoremediation trials of mine tailings in the Welkom gold fields, and to determine the AM fungal diversity of these sites. The Acacia spp. analysed were growing on rehabilitated gold and uranium mine tailings which had undergone different rehabilitation regimes. Planted acacia trees which had been inoculated with crude AM fungal inocula were present on one mine tailing site as compared to the second mine tailing site on which the acacias were naturally colonisers and the site had been ameliorated with garden refuse. Root and slime samples were collected in early spring and half if each initial sample was used immediately for colonisation analysis and to identify AM fungi through molecular analysis of the small subunit rRNS gene sequences; the other half of each sample was used to produce trap cultures which were used later for colonisation and molecular analysis. Total AM fungal colonisation of initial samples for planted acacies was 19 % and for naturally colonising acacias was 66 %. The total AM fungal colonisation of trap culture samples for planted acacias increased to 32 % and for naturallhy colonising acacias it increased to 78 %. Spore counts of initial samples averaged 402 spores per 100 g-1 soil for planted acacias and 455 spores per 100 g-1 soil for naturally colonising acacias. For trap culture samples, spore counts decreased by approximately 50 %. The AM fungi identified fell within 8 genera, namely, Diversispora, Rhizophagus, Scutellospora, Claroideoglomus, Cetraspora, Sclerocystis, Glomus and Redecker. The study represents a first report utilising molecular biosystematics with AM fungal DNA from colonised roots as the template. The results will assist in making decisions about future AM fungal surveys and applying AM fungal inoculum in phytoremediation trials of mine waste sites. Key words: Phytoremediation, mine tailings, arbuscular mycorrhizal (AM) fungus, Acacia, molecular identification, SSU rRNA gene sequence

Page generated in 0.052 seconds