• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 3
  • Tagged with
  • 88
  • 88
  • 88
  • 25
  • 23
  • 18
  • 16
  • 15
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigating the effect of Glomus etunicatum colonization on structure and phloem transport in roots of Eragrostis curvula (Umgeni)

Skinner, Amy January 2007 (has links)
The symbiotic unit of an arbuscular mycorrhizal fungus and its host is able toachieve and maintain far higher inflow of nutrients than non-mycorrhizal roots. The colonization strategy of the mycobiont within the plant is intrinsic to the symbiosis with respect to both structural adaptations and nutrient exchange. An investigation into the effect of Glomus etunicatum colonization on the structure and phloem transport in Eragrostis curvula (Umgeni) allowed for greater insight into the dynamic of the symbiosis. The combined use of stains (such as Trypan Blue, Chlorazol Black, Safranin and Fast Green), and techniques, (such as freeze-microtome transverse sectioning and permanent slide preparations) contributed to a successful general observation of an intermediate colonization strategy using light microscopy methods. However, clarity into structural detail of mycorrhizal forms required electron microscopy studies. The SEM method used with freeze fracture was a relatively quick and simple method allowing for the observation of surface and internal features. The TEM method allowed for highresolution images providing insight into the variations in the apoplasmic compartmental form, and how this may relate to the function of the symbiosis with regard to fungal coils or arbuscules. The apoplasmic nature of mycorrhizas was substantiated and no symplasmic connections were found between symbionts. Fluorescence studies demonstrated that 5,6-carboxyfluorescein was transported through the phloem into the roots of E. curvula, but remained predominantly in the root phloem. Unloading only occurred in optimal nutrient exchange areas of meristimatic lateral or apical growth regions. It was not possible, using fluorescence techniques and related equipment available, to conclusively establish if there were symplasmic connections between the mycobiont and its host or if bidirectional transfer of nutrients occurred at the same interface.
62

Interactions of arbuscular mycorrhizal fungi with an arsenic hyperaccumulator plant (pteris vittata) on the uptake of arsenic

Leung, Ho Man Homan 01 January 2008 (has links)
No description available.
63

The role of arbuscular mycorrhizal fungi (AMF) on the tolerance and accumulation of arsenic in rice (Oryza sativa L.)

Li, Hui 01 January 2012 (has links)
No description available.
64

Effects of Arbuscular Mycorrhizal Fungal Infection and Common Mycelial Network Formation on Invasive Plant Competition

Workman, Rachael Elizabeth 14 March 2014 (has links)
Understanding the biotic factors influencing invasive plant performance is essential for managing invaded land and preventing further exotic establishment and spread. I studied how competition between both conspecifics and native co-habitants and arbuscular mycorrhizal fungal (AMF) impacted the success of the invasive bunchgrass Brachypodium sylvaticumin early growth stages. I examined whether invasive plants performed and competed differently when grown in soil containing AMF from adjacent invaded and noninvaded ranges in order to determine the contribution of AMF to both monoculture stability and spread of the invasive to noninvaded territory. I also directly manipulated common mycelial network (CMN) formation by AMF to determine hyphal network contribution to competitive interactions. I found that invasive plants performed most poorly (as indicated by decreased chlorophyll content, size and shoot dry mass) in invaded range soil against conspecifics. This could be two-pronged evidence for existing biotic pressure on the invasives to expand into adjacent noninvaded ranges. I also found a negative effect of AMF colonization and invasive plant performance, potentially indicating deleterious plant-soil feedbacks which could help maintain plant biodiversity at a community level. CMN effects were found to be interactive with root competition and directly affected the performance and nutrient status of B. sylvaticum. Although no direct correlations between AMF colonization levels and competition were found, CMN presence contributed significantly to plant growth and nutrient status. Therefore AMF, through infection and CMN formation, may be able to influence invasive plant growth and spread in the field.
65

Systemic alteration of defense-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani

Guillon, Christopher. January 2001 (has links)
No description available.
66

The application of real-time PCR to investigate the effect of the arbuscular mycorrhizal fungus Glomus intraradices on the plant pathogen Fusarium solani f. sp. phaseoli /

Filion, Martin January 2002 (has links)
No description available.
67

Down-regulation of defense gene transcripts of Rhizoctonia solani-infected bean seedlings in response to inoculation with non-pathogenic fungi

Wen, Kui January 2004 (has links)
No description available.
68

The effect of VA endomycorrhizae on the growth of lettuce and pepper transplants

Watson, Ray A. January 1995 (has links)
No description available.
69

Movement of copper from in-ground root control fabrics

Kosuta, Sonja A. January 1998 (has links)
No description available.
70

Interactions between arbuscular mycorrhizal fungi and other root-infecting fungi

Kasiamdari, Rina Sri. January 2001 (has links) (PDF)
Bibliography: leaves 172-197.

Page generated in 0.0698 seconds