• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 53
  • 31
  • 25
  • 22
  • 22
  • 20
  • 19
  • 12
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 558
  • 131
  • 105
  • 78
  • 46
  • 45
  • 44
  • 41
  • 36
  • 35
  • 34
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Study on Distortion Control in Nozzle Welding of Stainless Steel Pressure Vessels

Peng, Jinning 06 November 2014 (has links)
The welding of austenite stainless steel often results in large amount of welding distortion due to its high thermal expansion coefficient and low thermal conductivity. This has created great difficulty in the dimensional control of the welded stainless steel structure, ending up with high manufacturing cost. Researches on the welding distortion of stainless steels were very limited, especially for large weld structures with complex component shapes. The studies of this thesis were initiated with focus on the stainless steel nozzle-to-shell-can weld structures, a very typical structural configuration for pressure vessels used in petrochemical and nuclear power generation industries. Both the experimental and the FEA (finite element analysis), i.e. computational simulation, approaches were taken in the studies which addressed the influences of the welding fixture, the welding sequence, and the welding process on the distortion caused by stainless steel nozzle-to-shell welding. The investigations employed single and multi-nozzle weld test models (called mockups in the thesis) or FEA models. Manual GTAW (gas tungsten arc welding) and SMAW (shielded metal arc welding) processes were selected to represent the most common practice for stainless steel nozzle welding. The FEA simulations were conducted with ABAQUS program using sequentially coupled transient analysis method with lumped weld passes to achieve high computing efficiency. The investigations on the effect of the welding fixture concluded that the contour fixtures introduced in the thesis be effective for reducing the welding distortion for both the single and the multi-nozzle welding. The contour fixtures tend to localize the welding distortion, hence yield less impact on the global distortion of the whole weld structure. The rib-bar fixture, a more common fixture type for multi-nozzle welding, was found resulting in a big jump in the shell plate distortion when the fixture was removed. The studies on the influence of the welding sequence revealed that a progressive approach was more favorable for distortion control under the given nozzle-to-shell weld structure configurations. The best sequence suggested is to start welding at one nozzle, firstly on shell OD (outside diameter) side then on ID (inside diameter) side, then proceed to next neighboring nozzle. The effect of the welding direction of each weld pass was found affecting only the nozzle angular distortion. The experimental data showed that the manual GTAW process developed much higher shell plate distortion than the SMAW process. The reason would be that a higher percentage of the welding heat had been consumed on the base metal. The influence of the weld bead size didn???t appear to be significant. In the FEA study on the effect of the size of the lumped weld pass, the increase in weld bead size even resulted in a decrease in weld distortion. From the FEA simulation point of view, using large lumped pass would be a highly efficient choice without compromising too much in the precision of the distortion prediction. The FEA study confirmed that a decrease in cooling time after welding would result in more welding distortion. The large scale multi-nozzle mockup with rib-bar fixture demonstrated a maximum out-of-plane shell distortion of 16.4mm after the welding of 10 nozzles with GTAW+SMAW process, which suggests that additional measures should be developed to further control the welding distortion.
92

Investigation of turbulent flows and instabilities in a stirred vessel using particle image velocimetry

Khan, Firoz R. January 2005 (has links)
Extensive use of stirred vessels in the process industries for various operations has attracted researchers to study the mixing mechanisms and its effects on the processes. Among the various flow-measuring methods, Particle Image Velocimetry (PlV) technique has become more popular in comparison to LDA and HW A methods because of its ability to provide instantaneous velocity fields. The present study uses this technique to investigate the flowfields and turbulent properties in a 290mm vessel stirred by Rushton Disc turbine (RDT) and Pitched blade turbine (PBT) impellers. Angle-resolved instantaneous flow-fields were obtained using 2-D and 3-D PlV technique. Flows in the RDT were examined. The distribution of out-of-plane vorticity and turbulent properties such as rms velocities, Reynolds stresses and turbulent kinetic energy was discussed. The flow number and power number of the RDT impeller were obtained as 0.83 and 5.16 respectively. Flows generated by the PBT impeller were examined in more detail. For this purpose, a multiblock approach was developed which allowed analysing larger fields of view with reasonably higher resolution. Whole vessel was thus mapped and various turbulent properties were examined. The mean flow-fields, out-of-plane vorticity and turbulent properties such as Reynolds stresses, turbulent kinetic energy and turbulent energy dissipation rates were estimated at different angle of blade rotation. The variation of the trailing vortex axis was obtained. The pumping number and power number ofPBT impeller was obtained as 0.86 and 1.52 respectively. Using this information, an integral length scales were estimated using 2-D FFT autocorrelation, which showed that these length scales vary significantly through out the vessel. It is demonstrated that assuming constant length scale through out the vessel could underestimate dissipation rate up to 25% in the impeller discharge. A kinetic energy balance was carried out around the PBT blades. It is shown that around 44% of the total power consumed by the impeller is dissipated within the impeller. The average rate of dissipation of kinetic energy was 39 times higher in the impeller region than the average dissipation rate in the vessel. Using LDA and PIV techniques, macro-instabilities (Ml) were studied. Spectral analysis was done using LOMB algorithm, which showed the presence of a dimensionless frequency of O.013-0.0174N in the RDT and PBT impellers. The frequency of Ml varied linearly with the impeller speed. The maximum broadening of turbulence levels due to the presence of Ml was around 20% for the PBT and 18% for the RDT impeller. The effect of mixing on the feed locations was studied using PlV measurements. Results showed that there is no direct effect of feed coming out of the feed pipe on the flow distribution, however, due to feed pipe, there was a wake formation close to the feed pipe. The low Reynolds number in the wake can affect local mixing conditions close to the feed pipe. At the end, angle-resolved Reynolds stresses were calculated and was noticed that flows in the vessel were isotropic in the bulk of the vessel however, anisotropic flow was noticed in the impeller stream.
93

Use of a tissue engineered media equivalent in the study of a novel smooth muscle cell phenotype

Broiles, JoSette Leigh Briggs. January 2008 (has links)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Nerem, Robert; Committee Member: Chaikof, Elliot; Committee Member: Taylor, W. Robert; Committee Member: Vito, Raymond; Committee Member: Wight, Thomas.
94

Preparation and characterization of electrospun poly(D,L-lactide-co-glycolide) scaffolds for vascular tissue engineering and the advancement of an in vitro blood vessel mimic a thesis /

Peña, Tiffany Richelle. Cardinal, Kristen O'Halloran. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Mode of access: Internet. Title from PDF title page; viewed on September 23, 2009. Major professor: Kristen O'Halloran Cardinal, Ph.D. "Presented to the faculty of the California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in General Engineering with specialization in Biomedical Engineering." "June 2009." Includes bibliographical references (p. 110-122).
95

Development of a tissue engineering strategy to create highly compliant blood vessels

Crapo, Peter Maughan. January 2008 (has links)
Thesis (M. S.)--Biomedical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Wang, Yadong; Committee Member: Dudley, Samuel; Committee Member: Garcia, Andres; Committee Member: McDevitt, Todd; Committee Member: Rosen, David.
96

A study of strength and vasoactivity in a tissue engineered vascular media

Schutte, Stacey C. January 2009 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Nerem, Robert M.; Committee Member: Gleason, Rudolf L.; Committee Member: Taylor, W. Robert; Committee Member: Vito, Raymond P.; Committee Member: Wang, Yadong.
97

Assessment of electrospinning as an in-house fabrication technique for blood vessel mimic cellular scaffolding a thesis /

James, Colby M. Cardinal, Kristen O'Halloran. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Mode of access: Internet. Title from PDF title page; viewed on November 19, 2009. Major professor: Dr. Kristen O'Halloran Cardinal. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Biomedical Engineering." "August 2009." Includes bibliographical references (p. 143-158).
98

Exploring the role of transmembrane 4 L six family member 1 (Tm4sf1) in the control of tip cell behaviour during sprouting angiogenesis

Page, Donna January 2015 (has links)
Angiogenesis is the process of new blood vessel sprouting from pre-existing vessels and is responsible for generating the majority of nascent vessels during development, tissue regeneration and disease. During angiogenesis, sprouting endothelial cells (ECs) are organised into leading 'tip' cells (TCs) and trailing 'stalk' cells (SCs). This hierarchal organisation of TCs and SCs is essential for the coordinated collective migration of ECs during sprouting. However, the precise mechanisms that define TC verses SC behaviour and identity remains uncertain. Transcriptomic analysis of sprouting vessels in zebrafish embryos led to the identification of a novel TC-associated gene, transmembrane 4 L six family member 1 (tm4sf1). We find that tm4sf1 expression is tightly spatiotemporally restricted to migrating TCs during intersegmental vessel (ISV) sprouting in zebrafish. Furthermore, TC tm4sf1 expression is controlled by the vascular endothelial growth factor receptor (Vegfr) - Notch signalling axis. Morpholino oligonucleotide (MO)-mediated knockdown of tm4sf1 reveals a subtle delay in ISV sprouting upon loss of tm4sf1 expression. Moreover, using multiplexed, real-time imaging approaches and in-depth analysis of TC and SC behaviours at single cell resolution, we reveal that the delay in ISV sprouting is specifically due to reduced TC motility. Furthermore, we find that tm4sf1 functions to induce TC motility in the leading daughter cell following TC mitosis, to rapidly re-establish post-mitotic TC behaviour. Generation of tm4sf1 mutant zebrafish lines using both transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) confirms that Tm4sf1 modulates TC behaviour. Additionally, mechanistic studies in human ECs reveal that tm4sf1 regulates VEGFR-mediated signalling upon VEGF-stimulation, which subsequently controls cell migration and expression of the TC determinants, DLL4 and VEGFR2. Hence, our results suggest that tm4sf1 is a novel modulator of the TC-SC hierarchy and collective EC migration during ISV sprouting. Overall, these findings have potential therapeutic implications since tm4sf1 may be a promising target for the manipulation of pathological angiogenesis in disease.
99

Analise de tensões através do método dos elementos finitos de um vaso de pressão projetado conforme código ASME

Mendonça, Douglas Piccolo [UNESP] 15 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-15Bitstream added on 2014-06-13T19:37:16Z : No. of bitstreams: 1 mendonca_dp_me_guara.pdf: 3863927 bytes, checksum: cfef071bb77c53f8b78223c45a6d65a3 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho estuda a distribuição de tensões através do método dos elementos finitos em componentes típicos de um vaso de pressão. As diretrizes e metodologia utilizadas nas análises estão de acordo com o código ASME. O vaso de pressão foi estudado para suportar as cargas mais comuns previstas em um projeto de equipamento de processo deste porte. As análises numéricas foram feitas com o software comercial ANSYS e comparados com resultados analíticos previstos no código ASME para os casos mais simples, onde foi obtida a validação dos resultados. Os casos mais complexos foram analisados apenas por soluções numéricas. Todos os casos obtiveram resultados abaixo das tensões admissíveis e de acordo com a metodologia do código, confirmando a viabilidade de análises deste tipo para os casos onde a solução analítica se torna muito conservativa. / Riveted lap joints represent a critical element in metallic airframe construction when designing against fatigue. These elements are widely used in the aerospace industry, so the study of the fatigue’s properties and variables has been increasingly broad. The variable that has shown to have a high influence on the fatigue strength of riveted joints is the clamping force applied to the riveting process. The life of the part tends to be higher when the clamping force applied is increased. The finite element method, which is a calculation tool applied in various fields of activity and has become an indispensable step of mechanical design, is used in this dissertation for the analysis of a riveted lap joint of aeronautic use. The joint is simulated considering the stages of the manufacturing process and application, in order to perform analysis of mechanical behavior and calculate the fatigue life. Through an experimental test of monotonic tensile, strain values were obtained with strain-gauges, and is made the correlation of these data with the numerical model to validate the modeling. Finally two more tests are made with different clamping forces, in order to check the influence of this variation in fatigue life of the joint.
100

Solving ill-posed problems with mollification and an application in biometrics

Lindgren, Emma January 2018 (has links)
This is a thesis about how mollification can be used as a regularization method to reduce noise in ill-posed problems in order to make them well-posed. Ill-posed problems are problems where noise get magnified during the solution process. An example of this is how measurement errors increases with differentiation. To correct this we use mollification. Mollification is a regularization method that uses integration or weighted average to even out a noisy function. The different types of error that occurs when mollifying are the truncation error and the propagated data error. We are going to calculate these errors and see what affects them. An other thing worth investigating is the ability to differentiate a mollified function even if the function itself can not be differentiated. An application to mollification is a blood vessel problem in biometrics where the goal is to calculate the elasticity of the blood vessel’s wall. To do this measurements from the blood and the blood vessel are required, as well as equations for the calculations. The model used for the calculations is ill-posed with regard to specific variables which is why we want to apply mollification. Here we are also going to take a look at how the noise level affects the final result as well as the mollification radius.

Page generated in 0.072 seconds