• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudio de la estabilización de nanoprismas de oro conjugados con angiopep-2 y su evaluación sobre la viabilidad celular

Ortiz Ojeda, Camilo Andrés January 2018 (has links)
Tesis presentada a la Universidad de Chile para optar al grado de Magíster en Bioquímica área de especialización Toxicología y Diagnóstico Molecular y Memoria para optar al Título de Bioquímico / Las nanopartículas de oro han ganado un gran interés científico ya que presentan propiedades y características únicas como una gran área superficial, resonancia de plasmón superficial, son biocompatibles y fáciles de sintetizar, entre otras. Pueden ser irradiadas de manera externa, absorbiendo energía, y liberarla de manera localizada en forma de calor, proceso denominado fototermia, el cual se ha utilizado en estrategias para destruir células cancerígenas o para desagregar agregados tóxicos, como los presentes en enfermedades neurodegenerativas como el Alzheimer. Para esta aplicación, las nanopartículas deben ser irradiadas con longitudes de onda en la región del infrarrojo cercano, denominada “ventana biológica” (700 a 1100 nm de longitud de onda) donde los tejidos no absorben la irradiación. Los nanoprismas de oro utilizados en esta tesis son estructuras anisotrópicas que poseen absorción en la “ventana biológica”, por lo que actualmente se investigan para el diagnóstico y tratamiento de enfermedades. Son sintetizados de manera sencilla y sin la utilización de reactivos tóxicos. Se sintetizaron y caracterizaron nanoprismas de oro, los cuales fueron multifuncionalizados con polietilenglicol, otorgando estabilidad al nanosistema, y con el péptido angiopep-2, que se ha reportado que permite el traspaso de las nanopartículas de oro a través de la barrera hematoencefálica mediante un mecanismo de transcitocis mediada por el receptor de lipoproteínas de baja densidad LRP1. La conjugación se realizó con dos tipos de polietilenglicol; el HS-PEG-Ome, que disminuye las interacciones inespecíficas y el HS-PEG-COOH, que posee un grupo carboxílico para la formación de un enlace amida con el péptido. Mediante la caracterización del nanosistema en las distintas etapas de conjugación y funcionalización se corroboró la incorporación de polietilenglicol y angiopep-2 a los nanoprismas de oro. Además, el nanosistema fue enriquecido mediante el uso de un protocolo de centrifugaciones. Por otra parte, se evaluó la estabilidad coloidal en medio de cultivo DMEM/F12 1% y PBS, siendo los nanoprismas de oro estables en sus distintos grados de multifuncionalización, con excepción de los nanoprismas desnudos en PBS los que son completamente inestables. Finalmente, estos nanosistemas obtenidos no presentaron efectos sobre la viabilidad celular de la línea SH-SY5Y a las condiciones estudiadas, haciendo a estos nanoprismas de oro un buen candidato para su utilización en terapia para enfermedades como la enfermedad de Alzheimer / Gold nanoparticles have gained great interest in science because they have unique properties and characteristics such as a large surface area, surface plasmon resonance, are biocompatible and easy to synthesize, among others. They can be irradiated externally, absorbing energy, and releasing in the form of heat it in a localized manner, process called photothermia, which has been used in strategies to destroy cancer cells or to disintegrate toxic aggregates, such as those present in neurodegenerative diseases such as Alzheimer's. For this application, the nanoparticles must be irradiated with wavelengths in the near infrared region, called "biological window" (700 to 1100 nm wavelength) where the tissues do not absorb the irradiation. The gold nanoprismas used in this thesis are anisotropic structures that have absorption in the "biological window", so they are currently being investigated for the diagnosis and treatment of diseases. They are synthesized in a simple way and without the use of any toxic reagents. Gold nanoprisms were synthesized and characterized, which were multifunctionalized with polyethylene glycol, granting stability to the nanosystem, and with the angiopep-2 peptide, which has been reported to allow the transfer of gold nanoparticles through the blood-brain barrier by a mechanism of transcitocis mediated by the low-density lipoprotein receptor LRP1. The conjugation with two types of polyethylene glycol was carried out; HS-PEG-Ome, which decreases the nonspecific interactions and HS-PEG-COOH, which possesses a carboxylic group for the formation of amide bond with the peptide. By characterizing the nanosystem in the different stages of conjugation and functionalization, the incorporation of polyethylene glycol and angiopep-2 to gold nanoprisms was corroborated. In addition, the nanosystem using a centrifugation protocol was enriched. On the other hand, the colloidal stability in DMEM/F12 1% culture medium and PBS was evaluated, being the gold nanoprismas stable in their different degrees of multifunctionalization, with exception of naked nanoprisms in PBS, which are completely unstable. Finally, these obtained nanosystems showed no effects on the cellular viability of the SH-SY5Y line under the conditions studied, making these gold nanoprisms a good candidate for their use in therapy for diseases such as Alzheimer's disease / Fondecyt; Fondap
2

Análisis comparativo de los genes involucrados en la supervivencia intracelular de Salmonella enterica serovar Typhimurium en macrófagos murinos y en la ameba Dictyostelium discoideum

Sabag Matilla, Andrea Verónica January 2017 (has links)
Tesis presentada a la Universidad de Chile para optar al Grado Académico de Magíster en Bioquímica, área de especialización en Bioquímica Clínica, y Memoria para optar al Título de Bioquímico / Salmonella es un patógeno intracelular capaz de generar cuadros clínicos que incluyen desde una enteritis autolimitada hasta infecciones sistémicas que pueden provocar la muerte del hospedero. Una vez dentro del organismo, la bacteria atraviesa la barrera epitelial intestinal e interactúa con células fagocíticas profesionales del sistema inmune innato, causando una respuesta inflamatoria local que culmina en la excreción del patógeno al medio ambiente. La patogenicidad de Salmonella se debe principalmente a su capacidad de sobrevivir dentro de macrófagos y células dendríticas, los cuales participan como vectores de diseminación dentro del hospedero. Los mecanismos utilizados por esta bacteria para permanecer y replicarse dentro de los macrófagos han sido ampliamente estudiados y descritos en la literatura. Sin embargo, existe escasa información referente a los mecanismos de supervivencia que emplea en otros estadíos de su ciclo de vida. Por ejemplo, en el medio ambiente Salmonella interactúa con otras células fagocíticas eucariontes capaces de alimentarse de bacterias y hongos. Entre ellas destacan las amebas, que utilizan mecanismos de endocitosis y degradación bacteriana similares a los utilizados por células del sistema inmune innato. En esta tesis, nos propusimos identificar un conjunto común de genes requeridos para la supervivencia intracelular de Salmonella Typhimurium en macrófagos murinos y en la ameba Dictyostelium discoideum. Este estudio se realizó mediante el análisis masivo de mutantes bajo selección negativa utilizando distintas genotecas de mutantes. La detección de aquellas mutantes que presentaron defectos en la supervivencia intracelular en ambas células fagocíticas se realizó mediante secuenciación masiva de DNA. En primera instancia, logramos identificar mutantes en 719 genes de S. Typhimurium bajo selección negativa en macrófagos murinos. Entre ellos, se encontraron genes codificados en islas de patogenicidad conservadas dentro Salmonella, genes relacionados con biosíntesis y transporte de aminoácidos y carbohidratos, genes relacionados con reguladores de respuesta a estímulos externos, genes involucrados en la biosíntesis y modificación del lipopolisacárido (LPS) y genes relacionados con estrés nutricional y oxidativo, entre otros. Al comparar estos datos con una base de datos de mutantes con defectos en la supervivencia intracelular en D. discoideum generada en nuestro laboratorio, logramos identificar mutantes en 213 genes de S. Typhimurium que serían necesarios para la supervivencia intracelular del patógeno en ambas células fagocíticas. Dentro de este grupo encontramos genes codificados en islas de patogenicidad conservadas del género Salmonella (SPI-1 y SPI-3), genes involucrados en la captación de hierro (iroC, iroN y feoB), genes relacionados con la respuesta a estrés por hambruna y pH ácido (spoT y adiY) y genes asociados a la biosíntesis y modificación del LPS (waaB, waaI, waaJ, waaL, waaZ, wbaC, wbaK, wbaM, wbaN, wbaD, oafA, wzzfepE y genes del operón arn), entre otros. Con el propósito de confirmar algunas de las predicciones obtenida a partir de nuestro análisis comparativo, se escogieron mutantes relacionadas con la biosíntesis y modificación del LPS y se evaluó su supervivencia intracelular en ambos modelos de infección. Nuestros resultados demostraron que las mutantes ΔwaaL, ΔwzzST y ΔarnBCADTEF presentaron defectos en la supervivencia intracelular en macrófagos murinos y D. discoideum. Por lo tanto, la presencia de un LPS completo que posea 16 a 35 unidades de AgO (L-AgO) sería necesario para la supervivencia de este patógeno en macrófagos murinos y D. discoideum. De igual forma, la modificación del LPS correspondiente a la adición de un grupo 4-aminoarabinosa al lípido A contribuiría a la supervivencia intracelular de S. Typhimurium en ambas células fagocíticas. En conjunto, los resultados de esta tesis constituyen un primer acercamiento a los mecanismos moleculares empleados por S. Typhimurium para sobrevivir en reservorios tan distintos como mamíferos y protozoos ambientales / Salmonella is an intracellular pathogen that causes a variety of illnesses ranging from self-limiting gastroenteritis to severe systemic infections that can cause the death of the host. Once inside the organism, these bacteria can cross the epithelial barrier and interact with professional phagocytic cells of the innate immune system, causing a local inflammatory response which culminates in the excretion of the pathogen to the environment. The pathogenicity of Salmonella is associated with its ability to survive in macrophages and dendritic cells, which can act as dissemination vectors inside the host. The molecular mechanisms used for these bacteria to survive and replicate in macrophages have been widely studied. However, no in-depth study has been conducted in order to understand the molecular mechanisms required for Salmonella survival in other stages of its life cycle. For instance, in the environment Salmonella interacts with other phagocytic cells that feed on bacteria and fungus. Among these, the amoebae use similar endocytic and degradation mechanisms to those described in innate immune cells. In this thesis, we aimed to identify a common group of genes required for the intracellular survival of Salmonella Typhimurium in murine macrophages and the amoeba Dictyostelium discoideum. To this end, we performed a high-throughput analysis of mutants under negative selection using different mutant libraries. The identification of mutants unable to survive intracellularly in both phagocytic cells was carried out by deep-sequencing. First, we identified 719 mutants of S. Typhimurium under negative selection in murine macrophages. These mutants included genes encoded in pathogenicity islands conserved in the Salmonella genus, genes involved in transport and biosynthesis of amino acids and carbohydrates, genes encoding regulators associated with response to external signals, genes linked to biosynthesis and modification of lipopolysaccharide (LPS) and genes associated to nutritional and oxidative stress, among other. The comparative analysis between the data of this thesis and data obtained in our laboratory that identified mutants with defects in intracellular survival in D. discoideum, allow us the identification of mutants in 213 genes of S. Typhimurium required to survive intracellularly in both phagocytic cells. Within this group, we found genes encoded in Salmonella pathogenicity islands (SPI-1 and SPI-3), genes involved in iron uptake (iroC, iroN and feoB), genes related with response to starvation and acid pH (spoT and adiY) and genes associated to LPS biosynthesis and modification (waaB, waaI, waaJ, waaL, waaZ, wbaC, wbaK, wbaM, wbaN, wbaD, oafA, wzzfepE and genes in the arn operon), among other. To confirm predictions from our comparative analysis, we choose mutants involved in LPS biosynthesis and evaluated their intracellular survival in both infection models. We demonstrated that mutants ΔwaaL, ΔwzzST and ΔarnBCADTEF are deficient in intracellular survival in murine macrophages and D. discoideum. Hence, a complete LPS containing 16 to 35 AgO units (L-AgO) would be necessary for survival of this pathogen in murine macrophages and D. discoideum. Similarly, a modified LPS containing 4-deoxy-aminoarabinose bound to lipid A would contribute to the intracellular survival of S. Typhimurium in both phagocytic cells. Overall, our results constitute a first step towards understanding the molecular mechanisms exploited by S. Typhimurium in order to survive in strikingly different niches such as mammalians and environmental protozoa / Fondecyt; Conicyt

Page generated in 0.1233 seconds