Spelling suggestions: "subject:"bibration,"" "subject:"clibration,""
421 |
The performance of corrugated carbon fibre pressure vessels under external pressureLittle, Andrew P. F. January 2000 (has links)
No description available.
|
422 |
Structural damage identification with changes in vibration characteristicsHo, Yuen Kim January 2001 (has links)
No description available.
|
423 |
The computer assisted modelling, simulation and analysis of two-wheeled road vehiclesGani, Mahbub Rahman January 1999 (has links)
No description available.
|
424 |
The nonlinear dynamics of articulated pipes conveying fluidChampneys, Alan R. January 1991 (has links)
No description available.
|
425 |
Detection of cracks in cylinders using modal analysisWake, Richard Neil January 1997 (has links)
No description available.
|
426 |
The dynamics and vibration control of a flexible armAl-Annaz, Sa'ad Shakir January 1992 (has links)
No description available.
|
427 |
Condition monitoring and neural networksMacintyre, John January 1996 (has links)
No description available.
|
428 |
Model-based control of plate vibrations using active constrained layer dampingChantalakhana, Chak January 2000 (has links)
In this thesis, the author presents a numerical and experimental study of the application of active constrained layer damping to a clamped-clamped plate. Piezoelectric actuators with modal controllers are used to improve the performance of vibration suppression from the passive constrained layer damping treatment. Surface damping treatments are often effective at suppressing higher frequency vibrations in thin-walled structures such as beams, plates and shells. However, the effective suppression of lower frequency modes usually requires the additional of an active vibration control scheme to augment the passive treatment. Advances in the technologies associated with so-called smart materials are dramatically reducing the cost, weight and complexity of active structural control and make it feasible to consider active schemes in an increasing number of applications. Specifically, a passive constrained layer damping treatment is enhanced with an active scheme employing a piezoceramic (PZT) patch as the actuator. Starting with an established finite element formulation it is shown how model updating and model reduction are required to produce a low-order state-space model which can be used as the basis for active control. The effectiveness of the formulation is then demonstrated in a numerical study. Finally, in the description of the experimental study it is shown how modes in the frequency range from 0 to 600 Hz are effectively suppressed: the two lowest modes (bending and torsional) through active control, the higher modes (around ten in number) by the passive constrained damping layer. The study'S original contribution lies in the experimental demonstration that given a sufficiently accurate model of the plate and passive constrained damping layer, together with a suitable active feedback control algorithm, spillover effects are not significant even when using a single sensor and single actuator. The experimental traces show, in some instances, minor effects due to spillover. However, it can be concluded that the presence of the passive layer introduces sufficient damping into the residual modes to avoid any major problems when using only the minimum amount of active control hardware.
|
429 |
Mixed modal balancing of flexible rotors without trial runsPreciado Delgado, E. January 1998 (has links)
The subject of this thesis is about the balancing of large flexible rotors which exhibit mixed modal characteristics. The objective of the research was to develop a balancing procedure to determine correction masses without trial runs. This required the determination of(a) the modal vibration vectors for each resonance, (b) the modal damping ratios,(c) the mode shapes and(d) the equivalent mass of the rotor for each mode. It was made clear from the beginning that trial runs are unavoidable either, when the mode shapes cannot be determined using an analytical or numerical method, or when there is dual vibration at normal operating speed, produced by the influence of higher unbalanced modes, is too high to allow continuous operation of the machine. Therefore, the scope of the project was limited to the possible determination of correction masses without trial runs for the vibration modes included within the normal operating range. Some studies about the minimisation or complete elimination of trial runs have been published by several authors, but a literature search revealed no reports of systematic application of these procedures to field balancing of large turbo generators. This suggested that some practical difficulties had still to be overcome, opening the possibility for further research on this area. Analysis of the rotor response demonstrated the necessity of considering the angular position of the transducers when registering the rotor vibration. It was shown that measuring in a direction other than those of the principal axes of stiffness introduces errors when determining the magnitude and phase of the correction masses. That is to say, failing to consider the effects of the transducer angular position eliminates the possibility of balancing the rotor without trial runs. This is the first time that this problem has been recognised. The procedure developed was verified using an experimental rotor rig. The successful application of the procedure to the balancing of this rotor demonstrates that balancing withouttrialrunsisnotonlyatheoreticalbutalsoapracticalpossibility. The dynamic characteristics of the rotor rig, however, were some what limited and did not cover all the possibilities considered during the project. Therefore, a more complete numerical example was also successfully solved using the computer model of a rotor with characteristics similar to those of a real turbine, and whose unbalanced distribution was not initially known by this author.
|
430 |
An improved method for simulation of vehicle vibration using a journey database and wavelet analysis for the pre-distribution testing of packagingGriffiths, Katharine Rhiannon January 2013 (has links)
Vehicle vibration is inherently random and non-stationary with a non-Gaussian distribution. In addition, variations in vehicle parameters, product payloads and distribution journeys mean that the characteristics of vibration are not identical for all distribution journeys. Because vehicle vibration and shock are key causes of damage during distribution, their simulation in pre-distribution testing is vital in order to ensure that adequate protection is provided for transported products. The established method set out in the current testing standards utilises a global set of averaged accelerated power spectral density spectra to construct random vibration signals. These signals are stationary with Gaussian distributions and, therefore, do not fully represent actual vehicle vibration, only an average. The aim of the investigation, reported on in this Thesis, was to create an improved test regime for simulating vehicle vibration for pre-distribution testing of packaging. This aim has been achieved through the construction of representative tests and the creation of realistic simulations with statistical significance. A journey database has been created, in which historic road profile data along with a quarter vehicle model have been used to approximate a known vehicle’s vibration on a specific distribution journey. Additionally, a wavelet decomposition method, in which wavelet analysis is used to decompose the approximate vehicle vibration in to a series of Gaussian approximations of varying amplitude and spectral content, has been developed. Along with theoretical work, case studies have been undertaken in order to validate the test regime.
|
Page generated in 0.0643 seconds