• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une approche biomimétique de la perception tactile chez les rongeurs / A biomimetic approach of rodents tactile perception

Claverie, Laure Nayélie 07 July 2016 (has links)
Les rongeurs utilisent leurs vibrisses pour sonder tactilement leur environnement. Tout contact induit des contraintes mécaniques lentes quasi-statiques et rapides vibratoires, qui se propagent jusqu'en base de vibrisse où des mécanorécepteurs dédiés les détectent. C'est cette étape de transduction mécanique de l'information tactile opérée par les vibrisses, avant tout codage neuronal,que nous avons étudiée.En combinant expériences biomimétiques et modélisations, nous avons cherché à isoler les contributions relatives des composantes lentes et rapides pour la détection etlocalisation d'objets, et la perception de textures. Un des enjeuxétait de comprendre ce qui d'un point de vue mécanique confère aux rongeurs leur rapidité et acuité remarquables. Pour cela, nous avons d’abord étudié la dynamique de choc vibrisse-objet, et montré que la position radiale de l’objet pouvait être encodée à la fois dans le taux de variation de la composante quasi-statique du moment en base et dans l’amplitude et la fréquence des vibrations induites. En mimant le mouvement de whisking, nous avons de plus montré qu’utiliser la composante vibratoire permet aux rongeurs une détection des contacts plus rapide et plus robuste. Nous avons ensuite étudié la perception de textures élémentaires, et montré que la variation maximale du moment en base dépendait de manière univoque de leur taille. Des expériences sur rats anesthésiés combinant suivi des vibrisses et mesures d’activité neuronale dans le cortex nous ont enfin permis de proposer un mécanisme d’encodage des textures où la topographie de la surface est modulée par les propriétés de vibrations de la vibrisse et démodulée au niveau neuronal. / Rodents use their facial whiskers to probe their environment by touch. Any contact induces both slow quasi-static and fast vibratory mechanical stresses that propagate down to the base of vibrissae where dedicated mechanoreceptors detect them. It is this phase of mechanical transduction of the tactile information operated by the whiskers, prior to any neural coding, that we have studied here. By combining biomimetic experiments and theoretical modeling, we have sought to separate the relative contributions of both slow and fast components, for the detection and localization of objects, as well as the perception of textures. One of the challenges of this work was to understand what determines from a mechanical point of view, rodents remarkable temporal and spatial precision.For this, we have first studied the shock dynamic between a whisker and an object and shown that the radial position of the object could be encoded both in the rate of change of the quasi-static component of the base torque as well as in the amplitude and frequency of the induced vibrations. In addition, by mimicking the whisking mode adopted by rodents, we have shown that using the vibratory component allows rodents to detect contacts faster and more robustly.We then studied the perception of elementary textures and showed that the maximum variation of the base torque depends univocally on their size. Experiments on anesthetized rats, combining whisker optical tracking and cortical neural activity measurements, led us to propose an encoding mechanism of texture perception where the surface topography is modulated by the vibration properties of the whiskers and demodulation occurs at a neuronal level.
2

Rôle de la connectivité intracorticale dans le traitement des informations sensorielles / Role of the intracortical connectivity during sensory processing

Quiquempoix, Michael 20 June 2017 (has links)
La perception consciente du monde extérieur repose sur la coordination spatiotemporelle de l’activité des neurones corticaux. Les aires corticales primaires chez les mammifères sont organisées en six couches. Il a été proposé que l’information sensorielle soit traitée de façon sérielle à travers les 6 couches du cortex. D’abord au niveau de la couche IV, cible des afférences thalamiques. Ensuite au niveau des couches II/III, innervées par les neurones excitateurs de la couche IV. Et enfin par les neurones des couches profondes, V et VI, qui sont innervés par les cellules pyramidales des couches II/III. Les neurones pyramidaux de la couche V constituant la principale sortie du néocortex.Il a récemment été montré que les neurones des couches profondes reçoivent également des informations sensorielles directement par des afférences thalamiques, ce qui pose la question du rôle de la connectivité interlaminaire dans le traitement sensoriel opéré par le cortex.J’ai ainsi tiré profit de la technique d’électroporation in utero qui permet d’exprimer spécifiquement des protéines photo-activables dans les cellules pyramidales des couches II/III du cortex somesthésique primaire de la souris. En procédant à des enregistrements unitaires des neurones corticaux à la fois chez des animaux anesthésiés et éveillés, j’ai montré que le recrutement des neurones pyramidaux des couches II/III amplifie les réponses sensorielles des neurones de la couche V. Par ailleurs, l’analyse de cette amplification en fonction de l’intensité des stimulations sensorielles indique que la connectivité interlaminaire joue un rôle majeur dans la modulation du gain des neurones de la couche de sortie du cortex. / The sensory perception of the external world relies on the coordinated activity in space and time of cortical neurons. Primary sensory areas of mammals are organized in six layers.It has been suggested that sensory information is processed serially through the six layers of the cortex. Sensory information is supposed to propagate first through the layer IV, principal target of thalamic axonal projections. Cortical layers II/III then receive sensory information relayed by layer IV excitatory neurons. Finally, deep cortical layers V and VI are connected by layer II/III pyramidal cells. Layer V pyramidal neurons are the principal output of the neocortex.Recently, it has been shown that deep layer neurons receive direct thalamic inputs relaying sensory information. The role of the translaminar connectivity during sensory processing remains an opened question.I took the advantage of in utero electroporation to express photo-sensitive proteins specifically in layer II/III pyramidal cells of the mouse primary somatosensory cortex.By proceeding to extracellular recordings of cortical neurons of either anesthetized or awake mice, I have shown that the recruitment of layer II/III pyramidal neurons amplifies layer V neurons sensory responses. Moreover, the analysis of this amplification phenomenon as a function the sensory stimulation intensity suggests that translaminar connectivity can operate a gain modulation of the layer V pyramidal neurons.
3

Unraveling the mechanisms responsible for the onset of catagen / Explorer les mécanismes responsables du déclenchement de la phase catagène

Duchamp de Lageneste, Marine 12 June 2017 (has links)
Le follicule pileux est un micro-organe spécifique des mammifères responsable de la formation des poils. Au cours de la vie postnatale, le follicule pileux subit des phases récurrentes de croissance (anagène), régression (catagène) et repos (télogène). Les mécanismes cellulaires et moléculaires qui régulent le cycle pilaire rappellent certains des évènements qui ont lieu durant la morphogénèse. Bien qu’il y ait eu des avancées significatives dans la connaissance de la biologie du follicule pileux ; les mécanismes qui régulent le passage de la phase anagène à la phase catagène restent mystérieux. Fgf5, un membre de la famille des facteurs de croissance des fibroblastes, a été identifié comme un régulateur clé de la transition anagène-catagène. Les souris qui ne produisent pas de protéine Fgf5 active présentent un phénotype angora (go/go) caractérisé par une phase anagène plus longue et de longs poils. Cependant, les follicules pileux n’ayant pas Fgf5, entrent quand même dans la phase catagène, ce qui suggère que d’autres mécanismes contribuent au control du cycle pilaire. Des précédents résultats obtenus dans notre laboratoire ont établis une relation très proche entre le déclenchement de la phase catagène et le diamètre du poil. En utilisant le follicule de vibrisse comme modèle, nous avons confirmé ces résultats en démontrant, par in hybridation in situ, que l’expression du gène Fgf5 s’active dans les cellules de la gaine épithéliale externe localisées dans la région supra-bulbaire, progressivement l’expression de Fgf5 s’étend jusqu’à l’extrémité inférieur de la gaine épithéliale externe et s’éteint quelques jours avant le début de la phase catagène, de nouveau dans les cellules de la gaine épithéliale externe localisées dans la partie supra-bulbaire. Nous avons également démontré que le nombre de couche cellulaires dans la région du cortex du poil, augmente progressivement au cours du temps jusqu’à atteindre exactement le même nombre de couche, quelques jours avant la fin de la phase de croissance, chez la souris sauvage et la souris Fgf5LacZ/LacZ. Ces résultats confirment notre hypothèse établissant que Fgf5 ne déclenche pas de façon direct la phase catagène. Ensuite, nous avons démontré pour la première fois que les cellules progénitrices du cortex peuvent se diviser symétriquement. Ces divisions symétriques très rares se traduisent, quelques jours après, en la formation d’une nouvelle couche cellulaire dans le cortex du poil. Ces résultats appuient notre hypothèse qu’une boucle de régulation complexe impliquant, la gaine épithéliale externe, la papille dermique (qui exprime Fgfr1, le récepteur de Fgf5), la matrice et la région supra-bulbaire ; est indispensable au control du cycle pilaire. Nous avons ensuite démontré par qRT-PCR et des marquages immunologiques que plusieurs canaux mécano-sensitifs sont exprimés de façon spécifique dans ces régions d’intérêts. De plus, plusieurs gènes importants pour la signalisation, sont également exprimés dans ces régions. Tout cela mis ensemble nos résultats soutiennent l’hypothèse provocatrice que la croissance progressive de la largeur du poil induit une pression mécanique qui entraine l’activation de canaux mécano-sensitifs, qui vont à leur tour activer des voies de signalisation pour finalement contrôler l’expression de Fgf5 dans la région supra-bulbaire et ainsi contrôler le cycle pilaire. / The hair follicle is a skin micro-organ specific to mammals and responsible for the formation of the hair. During postnatal life, the hair follicle undergoes recurrent phases of growth (anagen), regression (catagen) and rest (telogen) termed the hair cycle. The cellular and molecular mechanisms that regulate the hair cycle recapitulate some of the events occurring during morphogenesis. Despite significant advances in the understanding of biology of the hair follicle, the mechanisms regulating the switch from anagen to catagen remain mysterious. Fgf5, a member of the fibroblast growth factor family, has been proposed as a key regulator of the transition between anagen and catagen. Mice that do not produce active Fgf5 have an angora (go/go) phenotype characterized by an extended anagen phase and long hairs. Nevertheless, Fgf5 null hair follicles still enter catagen, suggesting that other mechanisms contribute to the control of the hair cycle. Previous work in the laboratory using Fgf5Lacz/LacZ null mice has unraveled a close connection between the onset of catagen and the diameter of the hair. Using the whisker follicle as a model system, we have confirmed these results and demonstrated by in situ hybridization that the expression of the Fgf5 gene is switched-on in the supra-bulbar region of the outer root sheath, progressively extends towards the lower extremity of the outer root sheath and is switched-off in the supra-bulbar region of the outer root sheath several days before the onset of catagen. We have also demonstrated that the number of cell layers in the hair cortex progressively increases with time to reach the exact same number a few days before the end of anagen in both wild-type and Fgf5 null follicles confirming our working hypothesis that Fgf5 does not directly trigger catagen. Next, we have demonstrated for the first time that the basal cortex-forming cells could divide symmetrically. These rare symmetrical divisions result in the formation of additional cell layers in the cortex. These results support our working hypothesis that a complex regulatory loop involving the outer sheath, the dermal papilla (that express Fgfr1, the Fgf5 receptor), the cortical matrix and the supra bulbar region is critical in controlling whisker growth. We have then demonstrated by q-RTPCR and immunostaining that several mechanosensitive channels are specifically expressed in the regions of interest. Moreover, several genes important for signaling are also expressed in these regions. Altogether, our results support the provocative hypothesis that the progressive increase in the width of the hair induces a mechanical pressure that leads to the activation of mechanosensitive channels, which in turn activate specific signaling pathways and ultimately result in the control of the expression of the Fgf5 gene in the supra-bulbar region of the outer root sheath and then in the control of the hair cycle.
4

Collecte d'information tactile chez le rat : biomécanique de la vibrisse et stratégie d'exploration

Boubenec, Yves 27 September 2012 (has links) (PDF)
La connaissance des mécanismes physiologiques de la perception sensorielle nécessite la compréhension de la manière dont le système nerveux central récolte et traite le flux de stimuli sensoriels qui le bombardent en permanence. Il est essentiel de caractériser de manière précise : 1) les stratégies d'exploration qu'utilise le rat pour positionner ses vibrisses par rapport à son environnement et 2) la manière dont ces organes senseurs produisent et transmettent un signal mécanique pertinent pour les mécanorécepteurs situés à la base de la vibrisse. Dans une première partie, nous avons trouvé que l'amplitude du whisking chez le rat en comportement décroit avec la vitesse de locomotion, tandis que les vibrisses sont globalement plus protractées quand l'animal court plus vite. Dans la seconde partie de la thèse, nous avons validé un modèle de transduction mécanique en comparant des prédictions théoriques avec des mesures expérimentales de déformations vibrissales. Ainsi nous avons pu décrire des événements dynamiques rapides ayant lieu après un choc sur un objet, ainsi que la propagation de ces ondes de déformation le long de la vibrisse jusqu'au follicule. D'autre part nous avons mis en évidence, suite à la stimulation d'une vibrisse, des mouvements d'une adjacente. Dans la dernière partie, nous avons mesuré et caractérisé les oscillations rapides induites par le glissement de la vibrisse sur une texture de topographie contrôlée. Nous avons rejoué ces déformations vibrissales en enregistrant concomitamment l'activité neuronale dans le cortex somatosensoriel. Nous avons montré qu'il existe une corrélation entre l'enveloppe de ces oscillations rapides et la réponse corticale.
5

Etude en microscopie de fluorescence à deux photons in vivo de l'intégration multi vibrissale chez le rat

Bertherat, Julien 17 December 2012 (has links) (PDF)
Le rat possède un ensemble de longues vibrisses qu'il peut bouger activement, ce qui lui permet d'explorer l'espace, de localiser les objets et de discriminer des textures. L'information sensorielle provenant des récepteurs périphériques des follicules où s'insèrent les vibrisses atteint, via des relais mésencéphaliques et thalamiques, des modules discrets, appelés " tonneaux ", de la couche IV du cortex somato-sensoriel primaire, puis se propage entre autre à la couche II/III du cortex somato-sensoriel primaire. Dans cette couche, des connexions horizontales permettent l'intégration d'informations provenant de plusieurs vibrisses différentes. Mon travail de thèse s'articule autour de la question de l'intégration multi-vibrissale dans le cortex somato-sensoriel chez le rat et est abordé grâce à la microscopie à deux photons in vivo. Il est partagé principalement en deux chapitres, le premier traitant de l'ensemble des développements optiques en microscopie à deux photons réalisés pour optimiser des enregistrements in vivo de l'activité neuronale, l'autre abordant la question de l'intégration multi-vibrissale au moyen de cette technique. J'ai donc développé un montage de microscopie à deux photons original capable d'enregistrer l'activité neuronale en couche II/III du cortex tout en donnant accès à l'architecture des réseaux enregistrés. Ce microscope permet de détecter à haute cadence des signaux calciques individuels tout en nécessitant une puissance modérée du laser d'excitation, ce qui limite la photo toxicité et le photo blanchiment. J'ai par ailleurs identifié quantitativement les différentes sources de bruits lors des enregistrements in vivo et mis en œuvre des solutions ad hoc (système de contention, algorithme de recalage des images...) pour réduire ou corriger ces bruits afin de n'être plus limité que par le bruit de photon. Enfin, j'ai estimé la qualité des enregistrements des cellules individuelles en excluant tout risque de contamination violente par des signaux collectifs tels que ceux provenant du neuropil. A l'aide de ce microscope, j'ai montré qu'il existe en couches II/III une ségrégation cellulaire selon un comportement globale ou local et que cette ségrégation s'articule au-dessus de l'organisation des tonneaux en couche IV, les cellules globales présentant une densité plus forte au-dessus des septa tandis que les cellules locales sont plus représentées au-dessus des tonneaux. Par ailleurs, au sein de la couche II/III du cortex j'ai mis en évidence l'absence de corrélation forte entre les sélectivités à la phase (dans l'espace 2D des stimuli optimaux mono-vibrisses) et à la direction (dans l'espace 2D physique) et posé les bases d'une étude de l'organisation spatiale de ces différentes sélectivités avec l'ébauche d'une cartographie fonctionnelle.

Page generated in 0.0635 seconds