Spelling suggestions: "subject:"vida residual"" "subject:"sida residual""
1 |
Vida residual em pacientes com insuficiência cardíaca: uma abordagem semiparamétrica / Residual life on heart failure pacients: a semiparametric approachDuarte, Victor Gonçalves 12 June 2017 (has links)
Usualmente a análise de sobrevivência considera a modelagem da função da taxa de falha ou função de risco. Uma alternativa a essa visão é estudar a vida residual, que em alguns casos é mais intuitiva do que a função de risco. A vida residual é o tempo de sobrevida adicional de um indivíduo que sobreviveu até um dado instante t0. Este trabalho descreve técnicas semiparamétricas e não paramétricas para estimar a média e a mediana de vida residual em uma população, testes para igualdade dessas medidas em duas populações e também modelos de regressão. Tais técnicas já foram testadas anteriormente em dados com baixa presença de censura; aqui elas são aplicadas a um conjunto de dados de pacientes com insuficiência cardíaca que possui uma alta quantidade de observações censuradas. / Usually, survival analysis is based on the modeling of the hazard function. One alternative approach is to consider the residual life, which would be more intuitive than the hazard function. Residual lifetime is the remaining survival time of a person given he or she survived a given time point t0. We describe semiparametric and non-parametric techniques for mean and median residual life estimation in a one-sample population, as well as tests for two-sample cases and regression models. Such techniques were previously tested for moderate censored data; here we apply them to heart-failure patients data with a high rate of censoring.
|
2 |
Vida residual em pacientes com insuficiência cardíaca: uma abordagem semiparamétrica / Residual life on heart failure pacients: a semiparametric approachVictor Gonçalves Duarte 12 June 2017 (has links)
Usualmente a análise de sobrevivência considera a modelagem da função da taxa de falha ou função de risco. Uma alternativa a essa visão é estudar a vida residual, que em alguns casos é mais intuitiva do que a função de risco. A vida residual é o tempo de sobrevida adicional de um indivíduo que sobreviveu até um dado instante t0. Este trabalho descreve técnicas semiparamétricas e não paramétricas para estimar a média e a mediana de vida residual em uma população, testes para igualdade dessas medidas em duas populações e também modelos de regressão. Tais técnicas já foram testadas anteriormente em dados com baixa presença de censura; aqui elas são aplicadas a um conjunto de dados de pacientes com insuficiência cardíaca que possui uma alta quantidade de observações censuradas. / Usually, survival analysis is based on the modeling of the hazard function. One alternative approach is to consider the residual life, which would be more intuitive than the hazard function. Residual lifetime is the remaining survival time of a person given he or she survived a given time point t0. We describe semiparametric and non-parametric techniques for mean and median residual life estimation in a one-sample population, as well as tests for two-sample cases and regression models. Such techniques were previously tested for moderate censored data; here we apply them to heart-failure patients data with a high rate of censoring.
|
3 |
Modelagem de dados de longa duração baseada em processos de nascimento e morte latentes / Birth and death long-term survival modelRitter, Victor Silva 13 August 2014 (has links)
Esse trabalho contribui com o desenvolvimento de um novo modelo para dados de sobrevivência com sobreviventes de longo termo visando uma formulação e interpretação mais realista do que a apresentada pelos modelos com fração de curados usuais. Motivados pelo estudo do tempo de sobrevivência residual para pacientes oncológicos, o modelo usa o processo de nascimento e morte para permitir a variação do número de fatores de risco latentes durante um período precedente ao acompanhamento médico, considerando, então, um cenário de riscos competitivos para obtenção da função da sobrevivência (imprópria) dos pacientes. Simulações a aplicações à dados do Instituto do Câncer do Estado de São Paulo mostraram vantagens sobre o modelo de tempos de promoção. / This work contributes with a new cure rate survival model developed aiming more realistic formulation and interpretations than the usual long-term survival models. Motivated by studying residual survival times in oncological patients, the model uses birth and death process to allow free variation on the number of latent risk factors during a pre-follow up period, then considers competing risks scenario for accessing the patients survival. Simulations and application to Instituto do Câncer do Estado de São Paulo data showed improvement over the promotion time model.
|
4 |
Modelagem de dados de longa duração baseada em processos de nascimento e morte latentes / Birth and death long-term survival modelVictor Silva Ritter 13 August 2014 (has links)
Esse trabalho contribui com o desenvolvimento de um novo modelo para dados de sobrevivência com sobreviventes de longo termo visando uma formulação e interpretação mais realista do que a apresentada pelos modelos com fração de curados usuais. Motivados pelo estudo do tempo de sobrevivência residual para pacientes oncológicos, o modelo usa o processo de nascimento e morte para permitir a variação do número de fatores de risco latentes durante um período precedente ao acompanhamento médico, considerando, então, um cenário de riscos competitivos para obtenção da função da sobrevivência (imprópria) dos pacientes. Simulações a aplicações à dados do Instituto do Câncer do Estado de São Paulo mostraram vantagens sobre o modelo de tempos de promoção. / This work contributes with a new cure rate survival model developed aiming more realistic formulation and interpretations than the usual long-term survival models. Motivated by studying residual survival times in oncological patients, the model uses birth and death process to allow free variation on the number of latent risk factors during a pre-follow up period, then considers competing risks scenario for accessing the patients survival. Simulations and application to Instituto do Câncer do Estado de São Paulo data showed improvement over the promotion time model.
|
Page generated in 0.0481 seconds