Spelling suggestions: "subject:"video browser"" "subject:"ideo browser""
1 |
Matching Slides to Presentation VideosFan, Quanfu January 2008 (has links)
Video streaming is becoming a major channel for distance learning (or e-learning). A tremendous number of videos for educational purpose are capturedand archived in various e-learning systems today throughout schools, corporations and over the Internet. However, making information searchable and browsable, and presenting results optimally for a wide range of users and systems, remains a challenge.In this work two core algorithms have been developedto support effective browsing and searching of educational videos. The first is a fully automatic approach that recognizes slides in the videowith high accuracy. Built upon SIFT (scale invariant feature transformation) keypoint matching using RANSAC (random sample consensus), the approach is independent of capture systems and can handle a variety of videos with different styles and plentiful ambiguities. In particular, we propose a multi-phase matching pipeline that incrementally identifies slides from the easy ones to the difficult ones. We achieve further robustness by using the matching confidence as part of a dynamic Hidden Markov model (HMM) that integrates temporal information, taking camera operations into account as well.The second algorithm locates slides in the video. We develop a non-linear optimization method (bundle adjustment) to accurately estimate the projective transformations (homographies) between slides and video frames. Different from estimating homography from a single image, our method solves a set of homographies jointly in a frame sequence that is related to a single slide.These two algorithms open up a series of possibilities for making the video content more searchable, browsable and understandable, thus greatly enriching the user's learning experience. Their usefulness has been demonstrated in the SLIC (Semantically Linking Instructional Content) system, which aims to turnsimple video content into fully interactive learning experience for students and scholars.
|
2 |
Sumarização de vídeos de histerocopias diagnósticas / Content-based summarization of diagnostic hysteroscopy videosGavião Neto, Wilson Pires January 2009 (has links)
Dada uma biblioteca com milhares de vídeos de histeroscopias diagnósticas, sobre a qual deseja-se realizar consultas como "retornar imagens contendo miomas submucosos" ou "recuperar imagens cujo diagnóstico é pólipo endometrial". Este é o contexto deste trabalho. Vídeos de histeroscopias diagnósticas são usados para avaliar a aparência do útero e são importantes não só para propósitos de diagnóstico de doenças mas também em estudos científicos em áreas da medicina, como reprodução humana e estudos sobre fertilidade. Estes vídeos contêm uma grande quantidade de informação, porém somente um número reduzido de quadros são úteis para propósitos de diagnósticos e/ou prognósticos. Esta tese apresenta um método para identificar automaticamente a informação relevante em vídeos de histeroscopias diagnósticas, criando um sumário do vídeo. Propõe-se uma representação hierárquica do conteúdo destes vídeos que é baseada no rastreamento de pontos geometricamente consistentes através da seqüência dos quadros. Demonstra-se que esta representação é uma maneira útil de organizar o conteúdo de vídeos de histeroscopias diagnósticas, permitindo que especialistas possam realizar atividades de browsing de uma forma rápida e sem introduzir informações espúrias no sumário do vídeo. Os experimentos indicam que o método proposto produz sumários compactos (com taxas de redução de dados em torno de 97.5%) sem descartar informações clinicamente relevantes. / Given a library containing thousands of diagnostic hysteroscopy videos, which are only indexed according to a patient ID and the exam date. Usually, users browse through this library in order to obtain answers to queries like retrieve images of submucosal myomas or recover images whose diagnosis is endometrial polyp. This is the context of this work. Specialists have been used diagnostic hysteroscopy videos to inspect the uterus appearance, once the images are important for diagnosis purposes as well as in medical research fields like human reproduction. These videos contain lots of information, but only a reduced number of frames are actually useful for diagnosis/prognosis purposes. This thesis proposes a technique to identify clinically relevant information in diagnostic hysteroscopy videos, creating a rich video summary. We propose a hierarchical representation based on a robust tracking of image points through the frame sequence. We demonstrate this representation is a helpful way to organize the hysteroscopy video content, allowing specialists to perform fast browsing without introducing spurious information in the video summary. The experimental results indicate that the method produces compact video summaries (data-rate reduction around 97.5%) without discarding clinically relevant information.
|
3 |
Sumarização de vídeos de histerocopias diagnósticas / Content-based summarization of diagnostic hysteroscopy videosGavião Neto, Wilson Pires January 2009 (has links)
Dada uma biblioteca com milhares de vídeos de histeroscopias diagnósticas, sobre a qual deseja-se realizar consultas como "retornar imagens contendo miomas submucosos" ou "recuperar imagens cujo diagnóstico é pólipo endometrial". Este é o contexto deste trabalho. Vídeos de histeroscopias diagnósticas são usados para avaliar a aparência do útero e são importantes não só para propósitos de diagnóstico de doenças mas também em estudos científicos em áreas da medicina, como reprodução humana e estudos sobre fertilidade. Estes vídeos contêm uma grande quantidade de informação, porém somente um número reduzido de quadros são úteis para propósitos de diagnósticos e/ou prognósticos. Esta tese apresenta um método para identificar automaticamente a informação relevante em vídeos de histeroscopias diagnósticas, criando um sumário do vídeo. Propõe-se uma representação hierárquica do conteúdo destes vídeos que é baseada no rastreamento de pontos geometricamente consistentes através da seqüência dos quadros. Demonstra-se que esta representação é uma maneira útil de organizar o conteúdo de vídeos de histeroscopias diagnósticas, permitindo que especialistas possam realizar atividades de browsing de uma forma rápida e sem introduzir informações espúrias no sumário do vídeo. Os experimentos indicam que o método proposto produz sumários compactos (com taxas de redução de dados em torno de 97.5%) sem descartar informações clinicamente relevantes. / Given a library containing thousands of diagnostic hysteroscopy videos, which are only indexed according to a patient ID and the exam date. Usually, users browse through this library in order to obtain answers to queries like retrieve images of submucosal myomas or recover images whose diagnosis is endometrial polyp. This is the context of this work. Specialists have been used diagnostic hysteroscopy videos to inspect the uterus appearance, once the images are important for diagnosis purposes as well as in medical research fields like human reproduction. These videos contain lots of information, but only a reduced number of frames are actually useful for diagnosis/prognosis purposes. This thesis proposes a technique to identify clinically relevant information in diagnostic hysteroscopy videos, creating a rich video summary. We propose a hierarchical representation based on a robust tracking of image points through the frame sequence. We demonstrate this representation is a helpful way to organize the hysteroscopy video content, allowing specialists to perform fast browsing without introducing spurious information in the video summary. The experimental results indicate that the method produces compact video summaries (data-rate reduction around 97.5%) without discarding clinically relevant information.
|
4 |
Sumarização de vídeos de histerocopias diagnósticas / Content-based summarization of diagnostic hysteroscopy videosGavião Neto, Wilson Pires January 2009 (has links)
Dada uma biblioteca com milhares de vídeos de histeroscopias diagnósticas, sobre a qual deseja-se realizar consultas como "retornar imagens contendo miomas submucosos" ou "recuperar imagens cujo diagnóstico é pólipo endometrial". Este é o contexto deste trabalho. Vídeos de histeroscopias diagnósticas são usados para avaliar a aparência do útero e são importantes não só para propósitos de diagnóstico de doenças mas também em estudos científicos em áreas da medicina, como reprodução humana e estudos sobre fertilidade. Estes vídeos contêm uma grande quantidade de informação, porém somente um número reduzido de quadros são úteis para propósitos de diagnósticos e/ou prognósticos. Esta tese apresenta um método para identificar automaticamente a informação relevante em vídeos de histeroscopias diagnósticas, criando um sumário do vídeo. Propõe-se uma representação hierárquica do conteúdo destes vídeos que é baseada no rastreamento de pontos geometricamente consistentes através da seqüência dos quadros. Demonstra-se que esta representação é uma maneira útil de organizar o conteúdo de vídeos de histeroscopias diagnósticas, permitindo que especialistas possam realizar atividades de browsing de uma forma rápida e sem introduzir informações espúrias no sumário do vídeo. Os experimentos indicam que o método proposto produz sumários compactos (com taxas de redução de dados em torno de 97.5%) sem descartar informações clinicamente relevantes. / Given a library containing thousands of diagnostic hysteroscopy videos, which are only indexed according to a patient ID and the exam date. Usually, users browse through this library in order to obtain answers to queries like retrieve images of submucosal myomas or recover images whose diagnosis is endometrial polyp. This is the context of this work. Specialists have been used diagnostic hysteroscopy videos to inspect the uterus appearance, once the images are important for diagnosis purposes as well as in medical research fields like human reproduction. These videos contain lots of information, but only a reduced number of frames are actually useful for diagnosis/prognosis purposes. This thesis proposes a technique to identify clinically relevant information in diagnostic hysteroscopy videos, creating a rich video summary. We propose a hierarchical representation based on a robust tracking of image points through the frame sequence. We demonstrate this representation is a helpful way to organize the hysteroscopy video content, allowing specialists to perform fast browsing without introducing spurious information in the video summary. The experimental results indicate that the method produces compact video summaries (data-rate reduction around 97.5%) without discarding clinically relevant information.
|
5 |
Recherche de vidéos académiques dans les collections en ligne : approche ergonomique / Searching academic videos in online collections : an ergonomic approachPapinot, Emmanuelle 14 December 2018 (has links)
De plus en plus d’environnements en ligne dédiés à la diffusion du savoir intègrent la vidéo dans leurs corpus multimédia. Par rapport au texte ou à l’image statique ou animée, la vidéo a encore peu fait l’objet d’études scientifiques en psychologie et ergonomie cognitive. La recherche de vidéo s’inscrit dans le contexte de la recherche d’information. Le cadre théorique de cette thèse est celui de l’Information Foraging (Pirolli & Card, 1999) qui conçoit la recherche d’information dans un environnement stochastique, fondée sur une fouille construite à partir de l’information intermédiaire de l’environnement. L’objectif principal de la thèse repose sur l’apport de connaissances sur les usagers, avec pour hypothèse initiale, la coexistence d’une diversité de buts de recherche de vidéos dont une meilleure connaissance permettrait de contribuer à l’amélioration de l’environnement. Une étude exploratoire utilisant une approche multi-méthodologique a été effectuée sur une plateforme audiovisuelle dont le corpus est ancré dans l’enseignement supérieur et la recherche et un musée virtuel dédié à l’histoire de la justice des crimes et des peines qui dispose d’un corpus multimédia. Les résultats montrent que les difficultés liées à la publication et aux conditions de mise en ligne des vidéos impactent directement la recherche de l’usager et qu’il s’avère pertinent de distinguer le média du document audiovisuel. La caractéristique commune aux deux dispositifs étudiés repose sur une fréquentation majoritaire représentée par des usagers cherchant à se cultiver qui questionne directement l’intérêt et l’usage de la vidéo en tant que véhicule de connaissances pour des buts spécifiques. / More and more online environments dedicated to the dissemination of academic knowledge are integrating videos into their multimedia corpus. Compared to static or animated text or graphics, video usability has not yet been the object of scientific studies in psychology and cognitive ergonomics. Video search is part of the information seeking process. The theoretical framework of this dissertation is the Information Foraging theory (Pirolli & Card, 1999), which describes information seeking in a stochastic environment, based on a search built on intermediary information. Our main goal is to provide knowledge about users, with the initial hypothesis that a variety of video-seeking goals can coexist among users. This knowledge can help improve the usability of online environments.An exploratory study using a multi-methodological approach was carried out on the usability of an audiovisual online platform for higher education and research and on a multimedia virtual museum dedicated to the history of crime justice and punishments. The results show that: (a) the difficulties related to online video publishing directly impact video search on the user side, (b) it is relevant to distinguish the video as a media from the audiovisual document. The characteristic common to both platforms is that a majority of users use the platform as a way to educate themselves, which directly questions the interest and use of video as a vehicle of knowledge acquisition for specific purposes.
|
6 |
JPEG 2000 and parity bit replenishment for remote video browsingDevaux, François-Olivier 19 September 2008 (has links)
This thesis is devoted to the study of a compression and transmission framework for video. It exploits the JPEG 2000 standard and the coding with side information principles to enable an efficient interactive browsing of video sequences. During the last decade, we have witnessed an explosion of digital visual information as well as a significant diversification of visualization devices. In terms of viewing experience, many applications now enable users to interact with the content stored on a distant server. Pausing video sequences to observe details by zooming and panning or, at the opposite, browsing low resolutions of high quality HD videos are becoming common tasks. The video distribution framework envisioned in this thesis targets such devices and applications.
Based on the conditional replenishment framework, the proposed system combines two complementary coding methods. The first one is JPEG 2000, a scalable and very efficient compression algorithm. The second method is based on the coding with side information paradigm. This technique is relatively novel in a video context, and has been adapted to the particular scalable image representation adopted in this work. Interestingly, it has been improved by integrating an image source model and by exploiting the temporal correlation inherent to the sequence.
A particularity of this work is the emphasis on the system scalability as well as on the server complexity. The proposed browsing architecture can scale to handle large volumes of content and serve a possibly very large number of heterogeneous users. This is achieved by defining a scheduler that adapts its decisions to the channel conditions and to user requirements expressed in terms of computational capabilities and spatio-temporal interest.
This scheduling is carried out in real-time at low computational cost and in a post-compression way, without re-encoding the sequences.
|
7 |
[pt] SEGMENTAÇÃO DE VÍDEO NO DOMÍNIO COMPRIMIDO BASEADA NA HISTÓRIA DA COMPACTAÇÃO / [en] VIDEO SEGMENTATION IN THE COMPRESSED DOMAIN BASED ON THE COMPRESSION HISTORYCRISTINA NADER VASCONCELOS 26 December 2005 (has links)
[pt] Este trabalho apresenta uma proposta de solução do problema de deteção de tomada de câmera de vídeos MPEG-1 e MPEG-2. A abordagem proposta está baseada na aplicação de diversas heurísticas para eliminação de quadros semelhantes, de forma a extrair um conjunto de quadros que representam os cortes entre tomadas de câmera vizinhas. Essas heurísticas analisam informações no domínio compactado, obtidas diretamente do fluxo de dados codificado dos vídeos, como forma de eliminar o processo de descompressão MPEG e diminuir o volume de dados manipulados durante a análise. A observação dos valores assumidos pelas diversas métricas utilizadas demonstrou a
existência de padrões falsos de corte relacionados à história do processo de codificação do vídeo. Por
esta razões, as análises das informações codificadas para detecção das tomadas de câmera procuram identificar padrões estabelecidos pelo processo de codificação, considerados assinaturas dos codificadores. Para distinção entre quadros com características de corte, de quadros com características influenciadas pelo codificador, são propostas filtragens para suavizar a influência dessas assinaturas nos valores obtidos pelas métricas de caracterização de similaridade. / [en] This works presents a proposal for finding shot cuts in
MPEG-1 and
MPEG-2 videos. The proposed approach is based on
heuristics for eliminating
similar frames and thus extracting a set of frames
positioned at cuts points. These
heuristics analyze the compressed data, retrieved from
MPEG video streams,
without any decompression, thus saving time and space
during the shot finding
process. The existence of false cut patterns is noticed by
studying the data
returned by the chosen metrics. In face of such false
positives (related to choices
made during the history of the video encoding process),
the analysis of the
compressed data tries to identify patterns in the encoded
stream, considered as
compressor signatures. To distinguish between cut frames
and frames
characterized by the encoding process, some filters are
proposed in order to
alleviate the compressor influence on the similarity
metrics results.
|
Page generated in 0.0707 seconds