• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 56
  • 9
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 288
  • 288
  • 89
  • 82
  • 80
  • 72
  • 47
  • 46
  • 43
  • 41
  • 41
  • 37
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A scheme for scalable mpeg-1 video for different available network bandwidths

Chen, Jing 01 January 1999 (has links)
No description available.
82

MPEG client software for set-top boxes of VoD systems

Zeng, Xianhong 01 April 2000 (has links)
No description available.
83

Adaptive tiling algorithm based on highly correlated picture regions for the HEVC standard / Algoritmo de tiling adaptativo baseado em regiões altamente correlacionadas de um quadro para o padrão de codificação de vídeos de alta eficiência

Silva, Cauane Blumenberg January 2014 (has links)
Esta dissertação de mestrado propõe um algoritmo adaptativo que é capaz de dinamicamente definir partições tile para quadros intra- e inter-preditos com o objetivo de reduzir o impacto na eficiência de codificação. Tiles são novas ferramentas orientadas ao paralelismo que integram o padrão de codificação de vídeos de alta eficiência (HEVC – High Efficiency Video Coding standard), as quais dividem o quadro em regiões retangulares independentes que podem ser processadas paralelamente. Para viabilizar o paralelismo, os tiles quebram as dependências de codificação através de suas bordas, gerando impactos na eficiência de codificação. Este impacto pode ser ainda maior caso os limites dos tiles dividam regiões altamente correlacionadas do quadro, porque a maior parte das ferramentas de codificação usam informações de contexto durante o processo de codificação. Assim, o algoritmo proposto agrupa as regiões do quadro que são altamente correlacionadas dentro de um mesmo tile para reduzir o impacto na eficiência de codificação que é inerente ao uso de tiles. Para localizar as regiões altamente correlacionadas do quadro de uma maneira inteligente, as características da imagem e também as informações de codificação são analisadas, gerando mapas de particionamento que servem como parâmetro de entrada para o algoritmo. Baseado nesses mapas, o algoritmo localiza as quebras naturais de contexto presentes nos quadros do vídeo e define os limites dos tiles nessas regiões. Dessa maneira, as quebras de dependência causadas pelas bordas dos tiles coincidem com as quebras de contexto naturais do quadro, minimizando as perdas na eficiência de codificação causadas pelo uso dos tiles. O algoritmo proposto é capaz de reduzir mais de 0.4% e mais de 0.5% o impacto na eficiência de codificação causado pelos tiles em quadros intra-preditos e inter-preditos, respectivamente, quando comparado com tiles uniformes. / This Master Thesis proposes an adaptive algorithm that is able to dynamically choose suitable tile partitions for intra- and inter-predicted frames in order to reduce the impact on coding efficiency arising from such partitioning. Tiles are novel parallelismoriented tools that integrate the High Efficiency Video Coding (HEVC) standard, which divide the frame into independent rectangular regions that can be processed in parallel. To enable the parallelism, tiles break the coding dependencies across their boundaries leading to coding efficiency impacts. These impacts can be even higher if tile boundaries split highly correlated picture regions, because most of the coding tools use context information during the encoding process. Hence, the proposed algorithm clusters the highly correlated picture regions inside the same tile to reduce the inherent coding efficiency impact of using tiles. To wisely locate the highly correlated picture regions, image characteristics and encoding information are analyzed, generating partitioning maps that serve as the algorithm input. Based on these maps, the algorithm locates the natural context break of the picture and defines the tile boundaries on these key regions. This way, the dependency breaks caused by the tile boundaries match the natural context breaks of a picture, then minimizing the coding efficiency losses caused by the use of tiles. The proposed adaptive tiling algorithm, in some cases, provides over 0.4% and over 0.5% of BD-rate savings for intra- and inter-predicted frames respectively, when compared to uniform-spaced tiles, an approach which does not consider the picture context to define the tile partitions.
84

Adaptive tiling algorithm based on highly correlated picture regions for the HEVC standard / Algoritmo de tiling adaptativo baseado em regiões altamente correlacionadas de um quadro para o padrão de codificação de vídeos de alta eficiência

Silva, Cauane Blumenberg January 2014 (has links)
Esta dissertação de mestrado propõe um algoritmo adaptativo que é capaz de dinamicamente definir partições tile para quadros intra- e inter-preditos com o objetivo de reduzir o impacto na eficiência de codificação. Tiles são novas ferramentas orientadas ao paralelismo que integram o padrão de codificação de vídeos de alta eficiência (HEVC – High Efficiency Video Coding standard), as quais dividem o quadro em regiões retangulares independentes que podem ser processadas paralelamente. Para viabilizar o paralelismo, os tiles quebram as dependências de codificação através de suas bordas, gerando impactos na eficiência de codificação. Este impacto pode ser ainda maior caso os limites dos tiles dividam regiões altamente correlacionadas do quadro, porque a maior parte das ferramentas de codificação usam informações de contexto durante o processo de codificação. Assim, o algoritmo proposto agrupa as regiões do quadro que são altamente correlacionadas dentro de um mesmo tile para reduzir o impacto na eficiência de codificação que é inerente ao uso de tiles. Para localizar as regiões altamente correlacionadas do quadro de uma maneira inteligente, as características da imagem e também as informações de codificação são analisadas, gerando mapas de particionamento que servem como parâmetro de entrada para o algoritmo. Baseado nesses mapas, o algoritmo localiza as quebras naturais de contexto presentes nos quadros do vídeo e define os limites dos tiles nessas regiões. Dessa maneira, as quebras de dependência causadas pelas bordas dos tiles coincidem com as quebras de contexto naturais do quadro, minimizando as perdas na eficiência de codificação causadas pelo uso dos tiles. O algoritmo proposto é capaz de reduzir mais de 0.4% e mais de 0.5% o impacto na eficiência de codificação causado pelos tiles em quadros intra-preditos e inter-preditos, respectivamente, quando comparado com tiles uniformes. / This Master Thesis proposes an adaptive algorithm that is able to dynamically choose suitable tile partitions for intra- and inter-predicted frames in order to reduce the impact on coding efficiency arising from such partitioning. Tiles are novel parallelismoriented tools that integrate the High Efficiency Video Coding (HEVC) standard, which divide the frame into independent rectangular regions that can be processed in parallel. To enable the parallelism, tiles break the coding dependencies across their boundaries leading to coding efficiency impacts. These impacts can be even higher if tile boundaries split highly correlated picture regions, because most of the coding tools use context information during the encoding process. Hence, the proposed algorithm clusters the highly correlated picture regions inside the same tile to reduce the inherent coding efficiency impact of using tiles. To wisely locate the highly correlated picture regions, image characteristics and encoding information are analyzed, generating partitioning maps that serve as the algorithm input. Based on these maps, the algorithm locates the natural context break of the picture and defines the tile boundaries on these key regions. This way, the dependency breaks caused by the tile boundaries match the natural context breaks of a picture, then minimizing the coding efficiency losses caused by the use of tiles. The proposed adaptive tiling algorithm, in some cases, provides over 0.4% and over 0.5% of BD-rate savings for intra- and inter-predicted frames respectively, when compared to uniform-spaced tiles, an approach which does not consider the picture context to define the tile partitions.
85

Variance Adaptive Quantization and Adaptive Offset Selection in High Efficiency Video Coding

Abrahamsson, Anna January 2016 (has links)
Video compression uses encoding to reduce the number of bits that are used forrepresenting a video file in order to store and transmit it at a smaller size. Adecoder reconstructs the received data into a representation of the original video.Video coding standards determines how the video compression should beconducted and one of the latest standards is High Efficiency Video Coding (HEVC).One technique that can be used in the encoder is variance adaptive quantizationwhich improves the subjective quality in videos. The technique assigns lowerquantization parameter values to parts of the frame with low variance to increasequality, and vice versa. Another part of the encoder is the sample adaptive offsetfilter, which reduces pixel errors caused by the compression. In this project, thevariance adaptive quantization technique is implemented in the Ericsson researchHEVC encoder c65. Its functionality is verified by subjective evaluation. It isinvestigated if the sample adaptive offset can exploit the adjusted quantizationparameters values when reducing pixel errors to improve compression efficiency. Amodel for this purpose is developed and implemented in c65. Data indicates thatthe model can increase the error reduction in the sample adaptive offset. However,the difference in performance of the model compared to a reference encoder is notsignificant.
86

Adaptive tiling algorithm based on highly correlated picture regions for the HEVC standard / Algoritmo de tiling adaptativo baseado em regiões altamente correlacionadas de um quadro para o padrão de codificação de vídeos de alta eficiência

Silva, Cauane Blumenberg January 2014 (has links)
Esta dissertação de mestrado propõe um algoritmo adaptativo que é capaz de dinamicamente definir partições tile para quadros intra- e inter-preditos com o objetivo de reduzir o impacto na eficiência de codificação. Tiles são novas ferramentas orientadas ao paralelismo que integram o padrão de codificação de vídeos de alta eficiência (HEVC – High Efficiency Video Coding standard), as quais dividem o quadro em regiões retangulares independentes que podem ser processadas paralelamente. Para viabilizar o paralelismo, os tiles quebram as dependências de codificação através de suas bordas, gerando impactos na eficiência de codificação. Este impacto pode ser ainda maior caso os limites dos tiles dividam regiões altamente correlacionadas do quadro, porque a maior parte das ferramentas de codificação usam informações de contexto durante o processo de codificação. Assim, o algoritmo proposto agrupa as regiões do quadro que são altamente correlacionadas dentro de um mesmo tile para reduzir o impacto na eficiência de codificação que é inerente ao uso de tiles. Para localizar as regiões altamente correlacionadas do quadro de uma maneira inteligente, as características da imagem e também as informações de codificação são analisadas, gerando mapas de particionamento que servem como parâmetro de entrada para o algoritmo. Baseado nesses mapas, o algoritmo localiza as quebras naturais de contexto presentes nos quadros do vídeo e define os limites dos tiles nessas regiões. Dessa maneira, as quebras de dependência causadas pelas bordas dos tiles coincidem com as quebras de contexto naturais do quadro, minimizando as perdas na eficiência de codificação causadas pelo uso dos tiles. O algoritmo proposto é capaz de reduzir mais de 0.4% e mais de 0.5% o impacto na eficiência de codificação causado pelos tiles em quadros intra-preditos e inter-preditos, respectivamente, quando comparado com tiles uniformes. / This Master Thesis proposes an adaptive algorithm that is able to dynamically choose suitable tile partitions for intra- and inter-predicted frames in order to reduce the impact on coding efficiency arising from such partitioning. Tiles are novel parallelismoriented tools that integrate the High Efficiency Video Coding (HEVC) standard, which divide the frame into independent rectangular regions that can be processed in parallel. To enable the parallelism, tiles break the coding dependencies across their boundaries leading to coding efficiency impacts. These impacts can be even higher if tile boundaries split highly correlated picture regions, because most of the coding tools use context information during the encoding process. Hence, the proposed algorithm clusters the highly correlated picture regions inside the same tile to reduce the inherent coding efficiency impact of using tiles. To wisely locate the highly correlated picture regions, image characteristics and encoding information are analyzed, generating partitioning maps that serve as the algorithm input. Based on these maps, the algorithm locates the natural context break of the picture and defines the tile boundaries on these key regions. This way, the dependency breaks caused by the tile boundaries match the natural context breaks of a picture, then minimizing the coding efficiency losses caused by the use of tiles. The proposed adaptive tiling algorithm, in some cases, provides over 0.4% and over 0.5% of BD-rate savings for intra- and inter-predicted frames respectively, when compared to uniform-spaced tiles, an approach which does not consider the picture context to define the tile partitions.
87

Bitrate Reduction Techniques for Low-Complexity Surveillance Video Coding

Gorur, Pushkar January 2016 (has links) (PDF)
High resolution surveillance video cameras are invaluable resources for effective crime prevention and forensic investigations. However, increasing communication bandwidth requirements of high definition surveillance videos are severely limiting the number of cameras that can be deployed. Higher bitrate also increases operating expenses due to higher data communication and storage costs. Hence, it is essential to develop low complexity algorithms which reduce data rate of the compressed video stream without affecting the image fidelity. In this thesis, a computer vision aided H.264 surveillance video encoder and four associated algorithms are proposed to reduce the bitrate. The proposed techniques are (I) Speeded up foreground segmentation, (II) Skip decision, (III) Reference frame selection and (IV) Face Region-of-Interest (ROI) coding. In the first part of the thesis, a modification to the adaptive Gaussian Mixture Model (GMM) based foreground segmentation algorithm is proposed to reduce computational complexity. This is achieved by replacing expensive floating point computations with low cost integer operations. To maintain accuracy, we compute periodic floating point updates for the GMM weight parameter using the value of an integer counter. Experiments show speedups in the range of 1.33 - 1.44 on standard video datasets where a large fraction of pixels are multimodal. In the second part, we propose a skip decision technique that uses a spatial sampler to sample pixels. The sampled pixels are segmented using the speeded up GMM algorithm. The storage pattern of the GMM parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. In the third part, a reference frame selection algorithm is proposed to maximize the number of background Macroblocks (MB’s) (i.e. MB’s that contain background image content) in the Decoded Picture Buffer. This reduces the cost of coding uncovered background regions. Distortion over foreground pixels is measured to quantify the performance of skip decision and reference frame selection techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence. In the final part of the thesis, face and shadow region detection is combined with the skip decision algorithm to perform ROI coding for pedestrian surveillance videos. Since person identification requires high quality face images, MB’s containing face image content are encoded with a low Quantization Parameter setting (i.e. high quality). Other regions of the body in the image are considered as RORI (Regions of reduced interest) and are encoded at low quality. The shadow regions are marked as Skip. Techniques that use only facial features to detect faces (e.g. Viola Jones face detector) are not robust in real world scenarios. Hence, we propose to initially detect pedestrians using deformable part models. The face region is determined using the deformed part locations. Detected pedestrians are tracked using an optical flow based tracker combined with a Kalman filter. The tracker improves the accuracy and also avoids the need to run the object detector on already detected pedestrians. Shadow and skin detector scores are computed over super pixels. Bilattice based logic inference is used to combine multiple likelihood scores and classify the super pixels as ROI, RORI or RONI. The coding mode and QP values of the MB’s are determined using the super pixel labels. The proposed techniques provide a further reduction in bitrate of up to 50.2%.
88

Rate Distortion Theory for Causal Video Coding: Characterization, Computation Algorithm, Comparison, and Code Design

Zheng, Lin January 2012 (has links)
Due to the sheer volume of data involved, video coding is an important application of lossy source coding, and has received wide industrial interest and support as evidenced by the development and success of a series of video coding standards. All MPEG-series and H-series video coding standards proposed so far are based upon a video coding paradigm called predictive video coding, where video source frames Xᵢ,i=1,2,...,N, are encoded in a frame by frame manner, the encoder and decoder for each frame Xᵢ, i =1, 2, ..., N, enlist help only from all previous encoded frames Sj, j=1, 2, ..., i-1. In this thesis, we will look further beyond all existing and proposed video coding standards, and introduce a new coding paradigm called causal video coding, in which the encoder for each frame Xᵢ can use all previous original frames Xj, j=1, 2, ..., i-1, and all previous encoded frames Sj, while the corresponding decoder can use only all previous encoded frames. We consider all studies, comparisons, and designs on causal video coding from an information theoretic point of view. Let R*c(D₁,...,D_N) (R*p(D₁,...,D_N), respectively) denote the minimum total rate required to achieve a given distortion level D₁,...,D_N > 0 in causal video coding (predictive video coding, respectively). A novel computation approach is proposed to analytically characterize, numerically compute, and compare the minimum total rate of causal video coding R*c(D₁,...,D_N) required to achieve a given distortion (quality) level D₁,...,D_N > 0. Specifically, we first show that for jointly stationary and ergodic sources X₁, ..., X_N, R*c(D₁,...,D_N) is equal to the infimum of the n-th order total rate distortion function R_{c,n}(D₁,...,D_N) over all n, where R_{c,n}(D₁,...,D_N) itself is given by the minimum of an information quantity over a set of auxiliary random variables. We then present an iterative algorithm for computing R_{c,n}(D₁,...,D_N) and demonstrate the convergence of the algorithm to the global minimum. The global convergence of the algorithm further enables us to not only establish a single-letter characterization of R*c(D₁,...,D_N) in a novel way when the N sources are an independent and identically distributed (IID) vector source, but also demonstrate a somewhat surprising result (dubbed the more and less coding theorem)---under some conditions on source frames and distortion, the more frames need to be encoded and transmitted, the less amount of data after encoding has to be actually sent. With the help of the algorithm, it is also shown by example that R*c(D₁,...,D_N) is in general much smaller than the total rate offered by the traditional greedy coding method by which each frame is encoded in a local optimum manner based on all information available to the encoder of the frame. As a by-product, an extended Markov lemma is established for correlated ergodic sources. From an information theoretic point of view, it is interesting to compare causal video coding and predictive video coding, which all existing video coding standards proposed so far are based upon. In this thesis, by fixing N=3, we first derive a single-letter characterization of R*p(D₁,D₂,D₃) for an IID vector source (X₁,X₂,X₃) where X₁ and X₂ are independent, and then demonstrate the existence of such X₁,X₂,X₃ for which R*p(D₁,D₂,D₃)>R*c(D₁,D₂,D₃) under some conditions on source frames and distortion. This result makes causal video coding an attractive framework for future video coding systems and standards. The design of causal video coding is also considered in the thesis from an information theoretic perspective by modeling each frame as a stationary information source. We first put forth a concept called causal scalar quantization, and then propose an algorithm for designing optimum fixed-rate causal scalar quantizers for causal video coding to minimize the total distortion among all sources. Simulation results show that in comparison with fixed-rate predictive scalar quantization, fixed-rate causal scalar quantization offers as large as 16% quality improvement (distortion reduction).
89

Rate Distortion Theory for Causal Video Coding: Characterization, Computation Algorithm, Comparison, and Code Design

Zheng, Lin January 2012 (has links)
Due to the sheer volume of data involved, video coding is an important application of lossy source coding, and has received wide industrial interest and support as evidenced by the development and success of a series of video coding standards. All MPEG-series and H-series video coding standards proposed so far are based upon a video coding paradigm called predictive video coding, where video source frames Xᵢ,i=1,2,...,N, are encoded in a frame by frame manner, the encoder and decoder for each frame Xᵢ, i =1, 2, ..., N, enlist help only from all previous encoded frames Sj, j=1, 2, ..., i-1. In this thesis, we will look further beyond all existing and proposed video coding standards, and introduce a new coding paradigm called causal video coding, in which the encoder for each frame Xᵢ can use all previous original frames Xj, j=1, 2, ..., i-1, and all previous encoded frames Sj, while the corresponding decoder can use only all previous encoded frames. We consider all studies, comparisons, and designs on causal video coding from an information theoretic point of view. Let R*c(D₁,...,D_N) (R*p(D₁,...,D_N), respectively) denote the minimum total rate required to achieve a given distortion level D₁,...,D_N > 0 in causal video coding (predictive video coding, respectively). A novel computation approach is proposed to analytically characterize, numerically compute, and compare the minimum total rate of causal video coding R*c(D₁,...,D_N) required to achieve a given distortion (quality) level D₁,...,D_N > 0. Specifically, we first show that for jointly stationary and ergodic sources X₁, ..., X_N, R*c(D₁,...,D_N) is equal to the infimum of the n-th order total rate distortion function R_{c,n}(D₁,...,D_N) over all n, where R_{c,n}(D₁,...,D_N) itself is given by the minimum of an information quantity over a set of auxiliary random variables. We then present an iterative algorithm for computing R_{c,n}(D₁,...,D_N) and demonstrate the convergence of the algorithm to the global minimum. The global convergence of the algorithm further enables us to not only establish a single-letter characterization of R*c(D₁,...,D_N) in a novel way when the N sources are an independent and identically distributed (IID) vector source, but also demonstrate a somewhat surprising result (dubbed the more and less coding theorem)---under some conditions on source frames and distortion, the more frames need to be encoded and transmitted, the less amount of data after encoding has to be actually sent. With the help of the algorithm, it is also shown by example that R*c(D₁,...,D_N) is in general much smaller than the total rate offered by the traditional greedy coding method by which each frame is encoded in a local optimum manner based on all information available to the encoder of the frame. As a by-product, an extended Markov lemma is established for correlated ergodic sources. From an information theoretic point of view, it is interesting to compare causal video coding and predictive video coding, which all existing video coding standards proposed so far are based upon. In this thesis, by fixing N=3, we first derive a single-letter characterization of R*p(D₁,D₂,D₃) for an IID vector source (X₁,X₂,X₃) where X₁ and X₂ are independent, and then demonstrate the existence of such X₁,X₂,X₃ for which R*p(D₁,D₂,D₃)>R*c(D₁,D₂,D₃) under some conditions on source frames and distortion. This result makes causal video coding an attractive framework for future video coding systems and standards. The design of causal video coding is also considered in the thesis from an information theoretic perspective by modeling each frame as a stationary information source. We first put forth a concept called causal scalar quantization, and then propose an algorithm for designing optimum fixed-rate causal scalar quantizers for causal video coding to minimize the total distortion among all sources. Simulation results show that in comparison with fixed-rate predictive scalar quantization, fixed-rate causal scalar quantization offers as large as 16% quality improvement (distortion reduction).
90

Analyse de Performance des Services de Vidéo Streaming Adaptatif dans les Réseaux Mobiles / Performance Analysis of HTTP Adaptive Video Streaming Services in Mobile Networks

Ye, Zakaria 02 May 2017 (has links)
Le trafic vidéo a subi une augmentation fulgurante sur Internet ces dernières années. Pour pallier à cette importante demande de contenu vidéo, la technologie du streaming adaptatif sur HTTP est utilisée. Elle est devenue par ailleurs très populaire car elle a été adoptée par les différents acteurs du domaine de la vidéo streaming. C’est une technologie moins couteuse qui permet aux fournisseurs de contenu, la réutilisation des serveurs web et des caches déjà déployés. En plus, elle est exempt de tout blocage car elle traverse facilement les pare-feux et les translations d’adresses sur Internet. Dans cette thèse, nous proposons une nouvelle méthode de vidéo streaming adaptatif appelé “Backward-Shifted Coding (BSC)”. Il se veut être une solution complémentaire au standard DASH, le streaming adaptatif et dynamique utilisant le protocole HTTP. Nous allons d’abord décrire ce qu’est la technologie BSC qui se base sur le codec (encodeur décodeur) à multi couches SVC, un algorithme de compression extensible ou évolutif. Nous détaillons aussi l’implémentation de BSC dans un environnement DASH. Ensuite,nous réalisons une évaluation analytique de BSC en utilisant des résultats standards de la théorie des files d’attente. Les résultats de cette analyse mathématique montrent que le protocole BSC permet de réduire considérablement le risque d’interruption de la vidéo pendant la lecture, ce dernier étant très pénalisant pour les utilisateurs. Ces résultats vont nous permettre de concevoir des algorithmes d’adaptation de qualité à la bande passante en vue d’améliorer l’expérience utilisateur. Ces algorithmes permettent d’améliorer la qualité de la vidéo même étant dans un environnement où le débit utilisateur est très instable.La dernière étape de la thèse consiste à la conception de stratégies de caching pour optimiser la transmission de contenu vidéo utilisant le codec SVC. En effet, dans le réseau, des serveurs de cache sont déployés dans le but de rapprocher le contenu vidéo auprès des utilisateurs pour réduire les délais de transmission et améliorer la qualité de la vidéo. Nous utilisons la programmation linéaire pour obtenir la solution optimale de caching afin de le comparer avec nos algorithmes proposés. Nous montrons que ces algorithmes augmentent la performance du système tout en permettant de décharger les liens de transmission du réseau cœur. / Due to the growth of video traffic over the Internet in recent years, HTTP AdaptiveStreaming (HAS) solution becomes the most popular streaming technology because ithas been succesfully adopted by the different actors in Internet video ecosystem. Itallows the service providers to use traditional stateless web servers and mobile edgecaches for streaming videos. Further, it allows users to access media content frombehind Firewalls and NATs.In this thesis we focus on the design of a novel video streaming delivery solutioncalled Backward-Shifted Coding (BSC), a complementary solution to Dynamic AdaptiveStreaming over HTTP (DASH), the standard version of HAS. We first describe theBackward-Shifted Coding scheme architecture based on the multi-layer Scalable VideoCoding (SVC). We also discuss the implementation of BSC protocol in DASH environment.Then, we perform the analytical evaluation of the Backward-Sihifted Codingusing results from queueing theory. The analytical results show that BSC considerablydecreases the video playback interruption which is the worst event that users can experienceduring the video session. Therefore, we design bitrate adaptation algorithms inorder to enhance the Quality of Experience (QoE) of the users in DASH/BSC system.The results of the proposed adaptation algorithms show that the flexibility of BSC allowsus to improve both the video quality and the variations of the quality during thestreaming session.Finally, we propose new caching policies to be used with video contents encodedusing SVC. Indeed, in DASH/BSC system, cache servers are deployed to make contentsclosed to the users in order to reduce network latency and improve user-perceived experience.We use Linear Programming to obtain optimal static cache composition tocompare with the results of our proposed algorithms. We show that these algorithmsincrease the system overall hit ratio and offload the backhaul links by decreasing thefetched content from the origin web servers.

Page generated in 0.44 seconds