• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility using RELAP5-3D and Generation of View Factors using MCNP

Wu, Huali 16 December 2013 (has links)
As one of the most attractive reactor types, The High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based on the 1/16 scale experimental facility established by Texas A&M University. Also, RELAP5-3D input decks are modified to replicate the experiment procedures and the experimental results are compared with the simulation results. The results show there is a perfect match between experimental and simulation results. Radiation heat transfer dominates in the heat transfer process of high temperature gas-cooled reactor due to its high operation temperature. According to experimental research done with the RCCS facility in Texas A&M University, radiation heat transfer takes up 80% of the total heat transferred to standing pipes. In radiation heat transfer, the important parameters are view factors between surfaces. However, because of the geometrical complexity in the experimental facility, it is hard to use the numerical method or analytical view factor formula to calculate view factors. In this project, MCNP based on the Monte Carlo method is used to generate view factors for RELAP5-3D input. MCNP is powerful in setting up complicated geometry, source definition and tally application. In the end, RCCS geometry is set up using MCNP and view factors are calculated.
2

Projeto de estruturas sujeitas à radiação térmica no interior de confinamentos utilizando o método da otimização topológica. / Design of radiant enclosures using topology optimization.

Castro, Douglas de Aquino 06 December 2013 (has links)
Estruturas que estão sujeitas a altas temperaturas absolutas, à convecção natural, ou ainda, estruturas que trocam calor na ausência de um meio físico, apresentam relevante transferência de calor por radiação térmica. Este fenômeno é importante para diversas aplicações e processos, como, por exemplo, no funcionamento de coletores solares, satélites, fornos industriais, motores a combustão e usinas nucleares. O presente trabalho de mestrado apresenta a aplicação do método da otimização topológica (MOT) no projeto de estruturas que trocam calor substancialmente por radiação térmica no interior de confinamentos, através da distribuição de material refletor ou de aquecedores. Por meio do MOT, cuja principal característica é a liberdade de distribuição do material dentro de um domínio inicial, é possível adicionar ou remover material de uma determinada região do domínio, criando ou desfazendo fronteiras, de forma livre, visando à obtenção de um projeto otimizado. O algoritmo de otimização é baseado no Método das Assíntotas Móveis (MMA) e é complementado pelo Método dos Elementos Finitos (MEF), para a análise do fenômeno de radiação em confinamentos. Ambos são implementados através do software Matlab. Os casos considerados são o da distribuição de material refletor de radiação térmica ou de aquecedores, sujeitos a uma eventual restrição nas quantidades destes materiais, sobre uma superfície plana, de forma a extremizar-se a irradiação ou a minimizar-se a temperatura em determinada área específica do domínio de projeto. Este problema depende, dentre outros fatores, da geometria da superfície e dos ângulos dos raios incidentes sobre ela. / Structures subjected to high absolute temperatures or to natural convection, as well structures that exchange heat in the absence of a physical medium present significant heat transfer through thermal radiation. This phenomenon is important for several applications and processes, such as in the operation of solar collectors, satellites, industrial furnaces, combustion engines and nuclear plants. The present work shows the application of topology optimization to the design of structures that exchange heat substantially by thermal radiation within an enclosure, through the distribution of reflective material or heaters. However, the design of such radiant enclosures is not trivial and it is necessary to use robust and systematic design tools, such as optimization techniques. Topology optimization is a numerical method which allows finding the layout, or topology, of a structure such that a prescribed objective is maximized or minimized subjected to design constraints. The optimization algorithm, based on the method of moving asymptotes (MMA), and the finite element method for analysis of the phenomenon of radiation in enclosures, are implemented using $Matlab^\\circledR$. The cases considered are the distribution of thermal radiation reflective material or heaters, subjected to a volume fraction constraint of these materials on a flat surface, in order to extremize the irradiation or to minimize the temperature in a specified region of the design domain. This problem depends, among other factors, on the geometry of the surfaces that exchange heat through thermal radiation.
3

Projeto de estruturas sujeitas à radiação térmica no interior de confinamentos utilizando o método da otimização topológica. / Design of radiant enclosures using topology optimization.

Douglas de Aquino Castro 06 December 2013 (has links)
Estruturas que estão sujeitas a altas temperaturas absolutas, à convecção natural, ou ainda, estruturas que trocam calor na ausência de um meio físico, apresentam relevante transferência de calor por radiação térmica. Este fenômeno é importante para diversas aplicações e processos, como, por exemplo, no funcionamento de coletores solares, satélites, fornos industriais, motores a combustão e usinas nucleares. O presente trabalho de mestrado apresenta a aplicação do método da otimização topológica (MOT) no projeto de estruturas que trocam calor substancialmente por radiação térmica no interior de confinamentos, através da distribuição de material refletor ou de aquecedores. Por meio do MOT, cuja principal característica é a liberdade de distribuição do material dentro de um domínio inicial, é possível adicionar ou remover material de uma determinada região do domínio, criando ou desfazendo fronteiras, de forma livre, visando à obtenção de um projeto otimizado. O algoritmo de otimização é baseado no Método das Assíntotas Móveis (MMA) e é complementado pelo Método dos Elementos Finitos (MEF), para a análise do fenômeno de radiação em confinamentos. Ambos são implementados através do software Matlab. Os casos considerados são o da distribuição de material refletor de radiação térmica ou de aquecedores, sujeitos a uma eventual restrição nas quantidades destes materiais, sobre uma superfície plana, de forma a extremizar-se a irradiação ou a minimizar-se a temperatura em determinada área específica do domínio de projeto. Este problema depende, dentre outros fatores, da geometria da superfície e dos ângulos dos raios incidentes sobre ela. / Structures subjected to high absolute temperatures or to natural convection, as well structures that exchange heat in the absence of a physical medium present significant heat transfer through thermal radiation. This phenomenon is important for several applications and processes, such as in the operation of solar collectors, satellites, industrial furnaces, combustion engines and nuclear plants. The present work shows the application of topology optimization to the design of structures that exchange heat substantially by thermal radiation within an enclosure, through the distribution of reflective material or heaters. However, the design of such radiant enclosures is not trivial and it is necessary to use robust and systematic design tools, such as optimization techniques. Topology optimization is a numerical method which allows finding the layout, or topology, of a structure such that a prescribed objective is maximized or minimized subjected to design constraints. The optimization algorithm, based on the method of moving asymptotes (MMA), and the finite element method for analysis of the phenomenon of radiation in enclosures, are implemented using $Matlab^\\circledR$. The cases considered are the distribution of thermal radiation reflective material or heaters, subjected to a volume fraction constraint of these materials on a flat surface, in order to extremize the irradiation or to minimize the temperature in a specified region of the design domain. This problem depends, among other factors, on the geometry of the surfaces that exchange heat through thermal radiation.
4

Innovative Ray Tracing Algorithms for Space Thermal Analysis

Vueghs, Pierre 09 March 2009 (has links)
Pour mettre au point le système de contrôle thermique dun engin spatial (satellite, sonde ou véhicule habité), lingénieur thermicien utilise des logiciels adaptés, tels quESARAD et ESATAN, commercialisés par ALSTOM. Comme la composante radiative peut jouer un rôle prédominant, les logiciels utilisés contiennent fréquemment un algorithme de lancer de rayons pour calculer les facteurs de vue et facteurs déchange radiatif entre des surfaces de dimensions finies, supposées isothermes. Les flux externes (solaires, albédo et infrarouge terrestres) sont également calculés par lancer de rayons. Enfin, les couplages conductifs sont habituellement encodés manuellement par lutilisateur. Comme le lancer de rayons est basé sur un processus aléatoire, la précision atteinte est déterminée par le nombre de rayons lancés. En général, le choix de ce nombre de rayons est laissé à la discrétion de lingénieur, ce qui peut conduire à des erreurs. Un autre inconvénient du lancer de rayons est sa faible convergence. Une méthode daccélération du lancer de rayons est nécessaire. Dans le cadre de la thèse, nous avons développé une méthode de lancer de rayons plus performante, que nous avons appelée hémisphère stratifié, caractérisée par une meilleure convergence. Un contrôle statistique derreur a été développé : lutilisateur spécifie la précision souhaitée (définie par une erreur relative maximale et un intervalle de confiance) et lalgorithme adapte automatiquement le nombre de rayons en fonction de la configuration géométrique. Sur base de cette erreur géométrique, un système déquations adjointes est utilisé pour obtenir une erreur énergétique, caractérisant les transferts de chaleur entre les surfaces. Lhémisphère stratifié est étendu de manière à inclure des fonctions de réflexion plus complexes. Lapplication des relations de réciprocité et de fermeture est également considérée. La méthode matricielle de Gebhart, qui permet de dériver les facteurs déchange radiatifs des facteurs de vue, est étendue de manière à inclure des surfaces non-diffuses et non-isothermes. Pour accélérer le lancer de rayons, les intersections rayons-surfaces ont été soigneusement étudiées. Nous avons également développé une méthode qui combine les primitives géométriques avec des maillages éléments finis. La représentation tri-dimensionnelle du modèle géométrique est plus adaptée au calcul de la composante radiative du transfert thermique tandis que les maillages éléments finis sont plus adaptés au calcul de la conduction. Cette méthode fournit également une accélération du lancer de rayons. De plus, le lancer de rayons est effectué sur la géométrie exacte, ce qui est nécessaire si des réflexions spéculaires sont modélisées. Nous expliquons comment le lancer de rayons peut être effectué sur la géométrie exacte et comment les facteurs de vue résultants peuvent être projetés sur les éléments finis. Nous définissons la notion de facteur de vue élément fini en calculant les facteurs de vue aux noeuds et en les interpolant sur lélément fini au moyen des fonctions de forme. Ces facteurs de vue élément fini sont utilisés pour lier radiativement les noeuds du modèle. Comme le champ de température est projeté sur les fonctions de forme, nous obtenons des éléments non-isothermes, contrairement aux résultats de la méthode Thermal Lumped Parameter (différences finies) utilisée habituellement en thermique spatiale. Les liens conductifs sont calculés automatiquement sur base du maillage éléments finis. Toutes ces améliorations résultent dans un algorithme plus rapide que le programme de référence ESARAD (pour une précision équivalente) et qui fonctionne avec un petit nombre de paramètres définis par lutilisateur. Pour valider lalgorithme proposé, le modèle du vaisseau XEUS, de lESA, a été implémenté. Des comparaisons ont été effectuées avec ESARAD et le code éléments finis SAMCEF.

Page generated in 0.2578 seconds