Spelling suggestions: "subject:"line copulas"" "subject:"line kopulas""
1 |
Risk Assessment of International Mixed Asset Portfolio with Vine CopulasNilsson, Axel January 2022 (has links)
This thesis gives an example of assessing the risk of a financial portfolio with international assets, where the assets may be of different classes, by the use of Monte Carlo simulation and Extreme Value Theory. The simulation uses univariate modelling, models of the assets’ returns as stochastic processes, as well as vine copulas to create dependency between the variables. For the asset returns a modified version of a discretized Merton jump diffusion model was used. The risk assessment used Extreme Value Theory to calculate Value at Risk and Expected Shortfall of the simulated portfolio. However, the resulting return distribution, and the risk assessment thereof, was not entirely satisfactory due to unreasonably large values ascertained. / Denna uppsats ger ett exempel på hur riskbedömning av finanisella portföljer med internationella tillgångar av olika tillgångsslag genom Monte Carlo simulering och extremvärdesteori. Simuleringen använder univariat modelling, modeller för tillgångarnas avkastningar som stokastiska processer, såväl som vine-copulas för att skapa ett beroende mellan tillgångarna. Tillgångarnas avkastningar modellerades med en modifierad version av en diskretiserad Merton-jump-diffusion model. Riskbedömningen använde extremvärdesteori för att beräkna Value-at-Risk och Expected-Shortfall. Dock blev den resulterande avkastningsfördelningen och riskbedömningen därav inte helt tillfredsällande på grund av att orimligt stora värden erhölls.
|
2 |
Gaussian copula modelling for integer-valued time seriesLennon, Hannah January 2016 (has links)
This thesis is concerned with the modelling of integer-valued time series. The data naturally occurs in various areas whenever a number of events are observed over time. The model considered in this study consists of a Gaussian copula with autoregressive-moving average (ARMA) dependence and discrete margins that can be specified, unspecified, with or without covariates. It can be interpreted as a 'digitised' ARMA model. An ARMA model is used for the latent process so that well-established methods in time series analysis can be used. Still the computation of the log-likelihood poses many problems because it is the sum of 2^N terms involving the Gaussian cumulative distribution function when N is the length of the time series. We consider an Monte Carlo Expectation-Maximisation (MCEM) algorithm for the maximum likelihood estimation of the model which works well for small to moderate N. Then an Approximate Bayesian Computation (ABC) method is developed to take advantage of the fact that data can be simulated easily from an ARMA model and digitised. A spectral comparison method is used in the rejection-acceptance step. This is shown to work well for large N. Finally we write the model in an R-vine copula representation and use a sequential algorithm for the computation of the log-likelihood. We evaluate the score and Hessian of the log-likelihood and give analytic solutions for the standard errors. The proposed methodologies are illustrated using simulation studies and highlight the advantages of incorporating classic ideas from time series analysis into modern methods of model fitting. For illustration we compare the three methods on US polio incidence data (Zeger, 1988) and we discuss their relative merits.
|
Page generated in 0.058 seconds