• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Use of nucleic acid probes and a nonradioactive labeling system for the detection of enteroviruses in water.

Richardson, Kenneth James. January 1989 (has links)
Enteroviruses affect a broad segment of the population throughout the world and have been suspected to play a major role in waterborne disease for quite some time. The presence of these viruses in drinking water supplies constitutes a major health risk to the population because of their low infectious dose. The monitoring and study of these viruses in the environment have been limited by the current standard detection methodologies. Nucleic acid probe hybridization is a new and effective approach for the study and detection of these viruses in the environment. An important step in the detection of viruses in concentrated water samples by nucleic acid probes is the isolation of the viral genome from the water sample for hybridization. Previously, a series of time consuming organic extract ions was used to isolate viral RNA. This study reports the development of an alternative method for the isolation and preservation of viral RNA in environmental samples. Briefly, the sample is heated in the presence of an RNase inhibitor, and then applied to a hybridization membrane. This procedure has greatly reduced the time and difficulty of the assay while maintaining sensitivity and increasing consistency. This study reports the development and modification of a nonradioactive labeling system for the detection of viruses in water. Nonradioactive labels such as biotin offer several advantages over radioactive labels including unlimited shelf life, reduced cost and time of assay, and elimination of the radiation hazard. However, radioactive labels are generally the more sensitive method of detection. By combining direct and indirect labeling strategies, the sensitivity of this nonradioactive assay has been increased ten-fold. This assay can detect as little as 100 plaque forming units of poliovirus, only one order of magnitude less sensitive than radiolabeled probes. This assay is also ten-fold less sensitive than radiolabeled probes for the detection of enteroviruses in water samples. Nonradioactive probes offer a safe, inexpensive alternative to radiolabeled probes and tissue culture for the detection of viruses in the environment when ultrasensitivity is not required.
12

Use of gene probes and an amplification method for the detection of rotaviruses in water

De Leon, Ricardo,1957- January 1989 (has links)
Rotaviruses are one of the most significant causes of diarrheal disease in the world. Their presence in groundwater and drinking water supplies constitutes a health risk to the population. The study of rotaviruses in the environment has been hampered by the lack of accessible and consistent detection methodologies. Gene probes and other molecular techniques are a novel approach for the detection of these viruses in water. The feasibility of these new techniques for the detection and study of rotaviruses in the environment has been assessed using the simian SA-11 and the culturable human Wa rotavirus strains as models. Two general approaches have been undertaken consisting of hybridization of probes with genomic RNA and hybridization with mRNA produced by the virion-incorporated transcriptase. Hybridization of gene probes with genomic dsRNA of rotaviruses in environmental concentrates resulted in the detection of 10 4 immunofoci of Wa rotavirus. In vitro transcription serves as an amplification method with sensitivity 100- to 1000-fold greater than when probing for genomic RNA. The sensitivity obtained in Wa-seeded distilled water and environmental concentrates after in vitro transcription is 2 and 20 immunofoci, respectively. Proteins in environmental concentrates decrease the efficiency of probe hybridization by 10-100 fold. Also, transcriptase-inhibiting factors found in environmental samples decrease the production of mRNA. Both proteins and transcriptase-inhibiting factors can be reduced significantly with Sephadex G-200 columns. Passage of environmental concentrate through Sephadex G-200 spun columns, followed by in vitro transcription, was used to detect rotaviruses in environmental samples. Rotaviruses were detected by this combination of techniques in eight of 20 sewage samples, one of 16 tap water samples, five of 32 ground water samples, and two of nine surface water samples. Only one of 17 samples which tested positive with Wa cDNA 4 was positive for non-specific probe binding. The probing of rotavirus mRNA, amplified by the virion-incorporated transcriptase, is a practical and feasible method for monitoring these viruses in the environment.
13

USE OF DYES AND PROTEINS AS INDICATORS OF VIRUS ADSORPTION TO SOILS.

Bassous, Marlene. January 1983 (has links)
No description available.
14

Detection of enteric viruses in East Tennessee public ground water systems

Johnson, Trisha Baldwin, January 2005 (has links) (PDF)
Thesis (M.S.) -- University of Tennessee, Knoxville, 2005. / Title from title page screen (viewed on Feb. 7, 2006). Thesis advisor: Larry D. McKay. Vita. Includes bibliographical references.
15

Risk of injection using reclaimed water for aquifer recharge using rotavirus as surrogate contaminant

Unknown Date (has links)
Groundwater aquifers are precious resources that has been serving human consumption for many centuries. This resource is pristine in comparison with surface waters such as lakes and canals, however, as population grows exponentially so does the demand for groundwater and the need to study the potential of groundwater replenishment programs. The injection of treated water or wastewater into an aquifer is a method to protect this resource for current and future generations. Health concerns would be expected since migration of water of “impaired quality” can affect the drinking water by contamination. Regulatory barriers resulting from the perceived risks of adverse health effects from pathogens such as viruses have limited the concept of this impaired water resources from being used for groundwater replenishment programs. The objective of this study is to examine the risk assessment using computational modeling with MODFLOW and MT3D groundwater transport simulation. The results from the simulation showed that after two years, the risk of contamination based on concentration contours from the injection well to the production wellfields for the City of Hollywood stabilized below 10- 6. The risk assessment provided important aspect to demonstrate the concept of using injection of treated water as an option for groundwater replenishment. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
16

A mathematical framework for designing and evaluating control strategies for water- & food-borne pathogens : a norovirus case study

McMenemy, Paul January 2017 (has links)
Norovirus (NoV) is a significant cause of gastroenteritis globally, and the consumption of oysters is frequently linked to outbreaks. Depuration is the principle means employed to reduce levels of potentially harmful agents or toxins in shellfish. The aim of this thesis is to construct mathematical models which can describe the depuration dynamics of water-borne pathogens, and specifically examine the dynamics of NoV during depuration for a population shellfish. Legislation is currently under consideration within the EU by the Directorate-General for Health and Consumers (DG SANCO) to limit the maximum level of NoV that consumers are exposed to via this route. Therefore it is important to the utility of the thesis that any models constructed should incorporate control measures which could be used to implement minimum NoV levels. Doing so allowed calculation of minimum depuration times that would be required to adhere to the control measures incorporated into the models. In addition to modelling the impact on pathogens during the depuration, we wished to gain some insight into how the variability, and not just the mean levels, of water-borne pathogens can be as important with respect to the length of depuration required to minimise any food safety risks to the consumer. This proved difficult in the absence of any data sets that can be used to calculate variability measures, as little data is currently available to inform these values for NoV. However, our modelling techniques were able to calculate an upper limit on the variability of water-borne pathogens that can be well approximated by lognormal distributions. Finally we construct a model which provided linkage between the depuration process and the accretion of pathogens by shellfish while still within farming waters. This model proposed that the pulses of untreated waste waters released by sewage treatment works due to high levels of rainfall would be transmitted into shellfish whilst filter-feeding.

Page generated in 0.0882 seconds