• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient viral infection of plant tissue culture and plants for production of virus and foreign protein

Shih, Sharon Min-Hsuan , Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
This work was aimed to investigate the basic viral infection protocols mainly focusing on Nicotiana benthamiana hairy root cultures and wild-type tobacco mosaic virus (TMV). The application of transgenic virus containing the gene for green fluorescent protein (GFP) for foreign protein production in plant tissue cultures and whole plants was also studied. The effect on viral accumulation of the form of plant tissue culture used, such as hairy roots, shooty teratomas and suspended cells, was investigated. Viral infection was shown to have no effect on culture growth and morphology. Hairy root cultures are a superior host for viral propagation and production in vitro. The maximum specific rate of viral accumulation occurred mainly during the root growth phase. The average maximum virus concentration in the hairy roots was 0.82 ?? 0.14 mg g-1 dry weight and virus protein represented a maximum of approximately 6% of total soluble protein in the root biomass. Proportional scale-up of TMVinfected hairy roots in shake flasks and bioreactors can be achieved without changing the average virus concentration accumulated in the hairy roots. The level of viral accumulation was much lower in N. benthamiana hairy roots infected with transgenic virus containing GFP (TMVGFPC3) compared with TMV and low levels or no GFP was detected. Viral accumulation and GFP production in whole plants was studied using different generations of transgenic TMV-GFPC3 virus. Hybrid viruses with the foreign gene GFPC3 deleted may have been formed in successive TMV-GFPC3 generations, resulting in the loss of GFP production and enhanced viral infectivity. In vitro generated RNA transcript and first generation TMV-GFPC3 were found to be more suitable for infection than the second generation TMV-GFPC3. However, the accumulation of GFP and virus concentration did not occur at the same ratio. Provided a more genetically stable transgenic viral vector is used for infection, transient viral infection of hairy roots can be a potential alternative system for foreign protein production than plants grown in the field as the containment or safety issues can be addressed.
2

Control of lysogeny in marine bacteria: Studies with phiHSIC and natural populations

Long, Amy K 01 June 2006 (has links)
Viruses have an estimated global population size of 10 to the 31st, with a significant proportion found in the marine environment. Viral lysis of bacteria affects the flow of carbon in the marine microbial food web, but the effects of lysogeny on marine microbial ecology are largely unknown. In this thesis, factors that influence the control of lysogeny were studied in both the phiHSIC/Listonella pelagia phage-host system and in bacterioplankton populations in the Gulf of Mexico. Using macroarrays dotted with phiHSIC amplicons, viral gene expression over the course of a synchronous infection experiment was measured. Early, middle, late, and continually expressed genes were identified, and included open reading frames 45, 28, 18 and 17, respectively. Viral gene expression in cultures of the HSIC-1a pseudolysogen grown in low and normal salinity media was also analyzed. Overall, levels of viral gene expression were higher in the 39 ppt treatment as compared to the 11 ppt tre atment for most ORFs. In the 11 ppt treatment, free phage concentrations were one to two orders of magnitude lower than the 39 ppt treatment while intracellular phage concentrations were one-fold lower. Therefore, at low salinities, expression of phiHSIC genes is repressed resulting in a lysogenic-like state, while at 39 ppt, lytic interactions dominated. Few viral genes were highly expressed at low salinity, suggesting that repression of viral genes was controlled by host genes. Samples from the eutrophic Mississippi River Plume and the oligotrophic Gulf of Mexico were analyzed for lytic phage production and occurrence of lysogeny. Significant lytic viral production was only observed three stations, none of which were located within the MRP. This signifies that system productivity is not an accurate predictor of viral productivity. The lysogenic fraction was also inversely correlated to bacterial activity, which decreased with depth. These findings support the hypothesis that lysogeny is a survival mechanism for phages when host cell density is low or when conditions do not favor growth. A unifying theme from these experiments was that lytic processes dominated when bacterial growth conditions were optimal, while lysogeny was observed at unfavorable growth conditions or environmental stress (low salinity).
3

Transient viral infection of plant tissue culture and plants for production of virus and foreign protein

Shih, Sharon Min-Hsuan , Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
This work was aimed to investigate the basic viral infection protocols mainly focusing on Nicotiana benthamiana hairy root cultures and wild-type tobacco mosaic virus (TMV). The application of transgenic virus containing the gene for green fluorescent protein (GFP) for foreign protein production in plant tissue cultures and whole plants was also studied. The effect on viral accumulation of the form of plant tissue culture used, such as hairy roots, shooty teratomas and suspended cells, was investigated. Viral infection was shown to have no effect on culture growth and morphology. Hairy root cultures are a superior host for viral propagation and production in vitro. The maximum specific rate of viral accumulation occurred mainly during the root growth phase. The average maximum virus concentration in the hairy roots was 0.82 ?? 0.14 mg g-1 dry weight and virus protein represented a maximum of approximately 6% of total soluble protein in the root biomass. Proportional scale-up of TMVinfected hairy roots in shake flasks and bioreactors can be achieved without changing the average virus concentration accumulated in the hairy roots. The level of viral accumulation was much lower in N. benthamiana hairy roots infected with transgenic virus containing GFP (TMVGFPC3) compared with TMV and low levels or no GFP was detected. Viral accumulation and GFP production in whole plants was studied using different generations of transgenic TMV-GFPC3 virus. Hybrid viruses with the foreign gene GFPC3 deleted may have been formed in successive TMV-GFPC3 generations, resulting in the loss of GFP production and enhanced viral infectivity. In vitro generated RNA transcript and first generation TMV-GFPC3 were found to be more suitable for infection than the second generation TMV-GFPC3. However, the accumulation of GFP and virus concentration did not occur at the same ratio. Provided a more genetically stable transgenic viral vector is used for infection, transient viral infection of hairy roots can be a potential alternative system for foreign protein production than plants grown in the field as the containment or safety issues can be addressed.

Page generated in 0.3749 seconds