• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Virtual three-axis milling process simulation and optimization

Merdol, Doruk Sūkrū 05 1900 (has links)
The ultimate goal in the manufacturing of a part is to achieve an economic production plan with precision and accuracy in the first attempt at machining. A physics-based comprehensive modeling of the machining processes is a fundamental requirement in identifying optimal cutting conditions which result in high productivity rates without violating accuracy throughout the part production process. This thesis presents generalized virtual simulation and optimization strategies to predict and optimize performance of milling processes up to 3-axis. Computationally efficient mathematical models are introduced to predict milling process state variables such as chip load, force, torque, and cutting edge engagement at discrete cutter locations. Process states are expressed explicitly as a function of helical cutting edge - part engagement, cutting coefficient and feedrate. Cutters with arbitrary geometries are modeled parametrically, and the intersection of helical cutting edges with workpiece features are evaluated either analytically or numerically depending on geometric complexity. The dynamics of generalized milling operations are modeled and the stability of the process is predicted using both time and frequency domain based models. These algorithms enable rapid simulation of milling operations in a virtual environment as the part features vary. In an effort to reduce machining time, a constraint-based optimization scheme is proposed to maximize the material removal rate by optimally selecting the depth of cut, width of cut, spindle speed and feedrate. A variety of user defined constraints such as maximum tool deflection, torque/power demand, and chatter stability are taken into consideration. Two alternative optimization strategies are presented: pre-process optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the post-process optimization tunes only feedrate and spindle speed of an existing part program to maximize productivity without violating physical constraints of the process. Optimized feedrates are filtered by considering machine tool axes limitations and the algorithms are tested in machining various industrial parts. The thesis contributed to the development of a novel 3-axis Virtual Milling System that has been deployed to the manufacturing industry.
2

Virtual three-axis milling process simulation and optimization

Merdol, Doruk Sūkrū 05 1900 (has links)
The ultimate goal in the manufacturing of a part is to achieve an economic production plan with precision and accuracy in the first attempt at machining. A physics-based comprehensive modeling of the machining processes is a fundamental requirement in identifying optimal cutting conditions which result in high productivity rates without violating accuracy throughout the part production process. This thesis presents generalized virtual simulation and optimization strategies to predict and optimize performance of milling processes up to 3-axis. Computationally efficient mathematical models are introduced to predict milling process state variables such as chip load, force, torque, and cutting edge engagement at discrete cutter locations. Process states are expressed explicitly as a function of helical cutting edge - part engagement, cutting coefficient and feedrate. Cutters with arbitrary geometries are modeled parametrically, and the intersection of helical cutting edges with workpiece features are evaluated either analytically or numerically depending on geometric complexity. The dynamics of generalized milling operations are modeled and the stability of the process is predicted using both time and frequency domain based models. These algorithms enable rapid simulation of milling operations in a virtual environment as the part features vary. In an effort to reduce machining time, a constraint-based optimization scheme is proposed to maximize the material removal rate by optimally selecting the depth of cut, width of cut, spindle speed and feedrate. A variety of user defined constraints such as maximum tool deflection, torque/power demand, and chatter stability are taken into consideration. Two alternative optimization strategies are presented: pre-process optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the post-process optimization tunes only feedrate and spindle speed of an existing part program to maximize productivity without violating physical constraints of the process. Optimized feedrates are filtered by considering machine tool axes limitations and the algorithms are tested in machining various industrial parts. The thesis contributed to the development of a novel 3-axis Virtual Milling System that has been deployed to the manufacturing industry.
3

Virtual three-axis milling process simulation and optimization

Merdol, Doruk Sūkrū 05 1900 (has links)
The ultimate goal in the manufacturing of a part is to achieve an economic production plan with precision and accuracy in the first attempt at machining. A physics-based comprehensive modeling of the machining processes is a fundamental requirement in identifying optimal cutting conditions which result in high productivity rates without violating accuracy throughout the part production process. This thesis presents generalized virtual simulation and optimization strategies to predict and optimize performance of milling processes up to 3-axis. Computationally efficient mathematical models are introduced to predict milling process state variables such as chip load, force, torque, and cutting edge engagement at discrete cutter locations. Process states are expressed explicitly as a function of helical cutting edge - part engagement, cutting coefficient and feedrate. Cutters with arbitrary geometries are modeled parametrically, and the intersection of helical cutting edges with workpiece features are evaluated either analytically or numerically depending on geometric complexity. The dynamics of generalized milling operations are modeled and the stability of the process is predicted using both time and frequency domain based models. These algorithms enable rapid simulation of milling operations in a virtual environment as the part features vary. In an effort to reduce machining time, a constraint-based optimization scheme is proposed to maximize the material removal rate by optimally selecting the depth of cut, width of cut, spindle speed and feedrate. A variety of user defined constraints such as maximum tool deflection, torque/power demand, and chatter stability are taken into consideration. Two alternative optimization strategies are presented: pre-process optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the post-process optimization tunes only feedrate and spindle speed of an existing part program to maximize productivity without violating physical constraints of the process. Optimized feedrates are filtered by considering machine tool axes limitations and the algorithms are tested in machining various industrial parts. The thesis contributed to the development of a novel 3-axis Virtual Milling System that has been deployed to the manufacturing industry. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
4

Virtual five-axis flank milling of jet engine impellers

Ferry, William Benjamin Stewart 11 1900 (has links)
This thesis presents models and algorithms necessary to simulate the five-axis flank milling of jet-engine impellers in a virtual environment. The impellers are used in the compression stage of the engine and are costly, difficult to machine, and time-consuming to manufacture. To improve the productivity of the flank milling operations, a procedure to predict and optimize the cutting process is proposed. The contributions of the thesis include a novel cutter-workpiece engagement calculation algorithm, a five-axis flank milling cutting mechanics model, two methods of optimizing feed rates for impeller machining tool paths and a new five-axis chatter stability algorithm. A semi-discrete, solid-modeling-based method of obtaining cutter-workpiece engagement (CWE) maps for five-axis flank milling with tapered ball-end mills is developed. It is compared against a benchmark z-buffer CWE calculation method, and is found to generate more accurate maps. A cutting force prediction model for five-axis flank milling is developed. This model is able to incorporate five-axis motion, serrated, variable-pitch, tapered, helical ball-end mills and irregular cutter-workpiece engagement maps. Simulated cutting forces are compared against experimental data collected with a rotating dynamometer. Predicted X and Y forces and cutting torque are found to have a reasonable agreement with the measured values. Two offline methods of optimizing the linear and angular feeds for the five-axis flank milling of impellers are developed. Both offer a systematic means of finding the highest feed possible, while respecting multiple constraints on the process outputs. In the thesis, application of these algorithms is shown to reduce the machining time for an impeller roughing tool path. Finally, a chatter stability algorithm is introduced that can be used to predict the stability of five-axis flank milling operations with general cutter geometry and irregular cutter-workpiece engagement maps. Currently, the new algorithm gives chatter stability predictions suitable for high speed five-axis flank milling. However, for low-speed impeller machining, these predictions are not accurate, due to the process damping that occurs in the physical system. At the time, this effect is difficult to model and is beyond the scope of the thesis.
5

Virtual five-axis flank milling of jet engine impellers

Ferry, William Benjamin Stewart 11 1900 (has links)
This thesis presents models and algorithms necessary to simulate the five-axis flank milling of jet-engine impellers in a virtual environment. The impellers are used in the compression stage of the engine and are costly, difficult to machine, and time-consuming to manufacture. To improve the productivity of the flank milling operations, a procedure to predict and optimize the cutting process is proposed. The contributions of the thesis include a novel cutter-workpiece engagement calculation algorithm, a five-axis flank milling cutting mechanics model, two methods of optimizing feed rates for impeller machining tool paths and a new five-axis chatter stability algorithm. A semi-discrete, solid-modeling-based method of obtaining cutter-workpiece engagement (CWE) maps for five-axis flank milling with tapered ball-end mills is developed. It is compared against a benchmark z-buffer CWE calculation method, and is found to generate more accurate maps. A cutting force prediction model for five-axis flank milling is developed. This model is able to incorporate five-axis motion, serrated, variable-pitch, tapered, helical ball-end mills and irregular cutter-workpiece engagement maps. Simulated cutting forces are compared against experimental data collected with a rotating dynamometer. Predicted X and Y forces and cutting torque are found to have a reasonable agreement with the measured values. Two offline methods of optimizing the linear and angular feeds for the five-axis flank milling of impellers are developed. Both offer a systematic means of finding the highest feed possible, while respecting multiple constraints on the process outputs. In the thesis, application of these algorithms is shown to reduce the machining time for an impeller roughing tool path. Finally, a chatter stability algorithm is introduced that can be used to predict the stability of five-axis flank milling operations with general cutter geometry and irregular cutter-workpiece engagement maps. Currently, the new algorithm gives chatter stability predictions suitable for high speed five-axis flank milling. However, for low-speed impeller machining, these predictions are not accurate, due to the process damping that occurs in the physical system. At the time, this effect is difficult to model and is beyond the scope of the thesis.
6

Virtual five-axis flank milling of jet engine impellers

Ferry, William Benjamin Stewart 11 1900 (has links)
This thesis presents models and algorithms necessary to simulate the five-axis flank milling of jet-engine impellers in a virtual environment. The impellers are used in the compression stage of the engine and are costly, difficult to machine, and time-consuming to manufacture. To improve the productivity of the flank milling operations, a procedure to predict and optimize the cutting process is proposed. The contributions of the thesis include a novel cutter-workpiece engagement calculation algorithm, a five-axis flank milling cutting mechanics model, two methods of optimizing feed rates for impeller machining tool paths and a new five-axis chatter stability algorithm. A semi-discrete, solid-modeling-based method of obtaining cutter-workpiece engagement (CWE) maps for five-axis flank milling with tapered ball-end mills is developed. It is compared against a benchmark z-buffer CWE calculation method, and is found to generate more accurate maps. A cutting force prediction model for five-axis flank milling is developed. This model is able to incorporate five-axis motion, serrated, variable-pitch, tapered, helical ball-end mills and irregular cutter-workpiece engagement maps. Simulated cutting forces are compared against experimental data collected with a rotating dynamometer. Predicted X and Y forces and cutting torque are found to have a reasonable agreement with the measured values. Two offline methods of optimizing the linear and angular feeds for the five-axis flank milling of impellers are developed. Both offer a systematic means of finding the highest feed possible, while respecting multiple constraints on the process outputs. In the thesis, application of these algorithms is shown to reduce the machining time for an impeller roughing tool path. Finally, a chatter stability algorithm is introduced that can be used to predict the stability of five-axis flank milling operations with general cutter geometry and irregular cutter-workpiece engagement maps. Currently, the new algorithm gives chatter stability predictions suitable for high speed five-axis flank milling. However, for low-speed impeller machining, these predictions are not accurate, due to the process damping that occurs in the physical system. At the time, this effect is difficult to model and is beyond the scope of the thesis. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
7

Interactive Virtual Machining : A Voxel Based Approach

Mahesh, N 12 1900 (has links) (PDF)
No description available.
8

An integrated framework for virtual machining and inspection of turned parts

Ramaswami, Hemant 06 December 2010 (has links)
No description available.
9

A Computational Framework for Control of Machining System Capability : From Formulation to Implementation

Archenti, Andreas January 2011 (has links)
Comprehensive knowledge and information about the static and dynamic behaviour of machine tools, cutting processes and their interaction is essential for machining system design, simulation, control and robust operation in safe conditions. The very complex system of a machine tool, fixture and cutting tools during the machining of a part is almost impossible to model analytically with sufficient accuracy. In combination with increasing demands for precision and efficiency in machining call for new control strategies for machining systems. These strategies need to be based on the identification of the static and dynamic stability under both the operational and off-operational conditions. To achieve this it is necessary to monitor and analyze the real system at the factory floor in full production. Design information and operational data can then be linked together to make a realistic digital model of a given machining system. Information from such a model can then be used as input in machining simulation software to find the root causes of instability. The work presented in this thesis deals with the static and dynamic capability of machining systems. The main focus is on the operational stability of the machining system and structural behaviour of only the machine tool, as well. When the accuracy of a machining system is measured by traditional techniques, effects from neither the static stiffness nor the cutting process are taken into account. This limits the applicability of these techniques for realistic evaluation of a machining system’s accuracy. The research presented in this thesis takes a different approach by introducing the concept of operational dynamic parameters. The concept of operational dynamic parameters entails an interaction between the structural elements of the machining systems and the process parameters. According to this concept, the absolute criterion of damping is used to evaluate the dynamic behaviour of a machining system. In contrast to the traditional theory, this methodology allows to determine the machining system's dynamic stability, in real time under operating conditions. This framework also includes an evaluation of the static deformations of a machine tool.  In this context, a novel concept of elastically linked system is introduced to account for the representation of the cutting force trough an elastic link that closes the force loop. In addition to the elastic link which behaves as a static element, a dynamic non-contact link has been introduced. The purpose is to study the non-linear effects introduced by variations of contact conditions in joints due to rotational speed. / QC 20111123
10

Cutter-workpiece engagement identification in multi-axis milling

Aras, Eyyup 11 1900 (has links)
This thesis presents cutter swept volume generation, in-process workpiece modeling and Cutter Workpiece Engagement (CWE) algorithms for finding the instantaneous intersections between cutter and workpiece in milling. One of the steps in simulating machining operations is the accurate extraction of the intersection geometry between cutter and workpiece. This geometry is a key input to force calculations and feed rate scheduling in milling. Given that industrial machined components can have highly complex geometries, extracting intersections accurately and efficiently is challenging. Three main steps are needed to obtain the intersection geometry between cutter and workpiece. These are the Swept volume generation, in-process workpiece modeling and CWE extraction respectively. In this thesis an analytical methodology for determining the shapes of the cutter swept envelopes is developed. In this methodology, cutter surfaces performing 5-axis tool motions are decomposed into a set of characteristic circles. For obtaining these circles a concept of two-parameter-family of spheres is introduced. Considering relationships among the circles the swept envelopes are defined analytically. The implementation of methodology is simple, especially when the cutter geometries are represented by pipe surfaces. During the machining simulation the workpiece update is required to keep track of the material removal process. Several choices for workpiece updates exist. These are the solid, facetted and vector model based methodologies. For updating the workpiece surfaces represented by the solid or faceted models third party software can be used. In this thesis multi-axis milling update methodologies are developed for workpieces defined by discrete vectors with different orientations. For simplifying the intersection calculations between discrete vectors and the tool envelope the properties of canal surfaces are utilized. A typical NC cutter has different surfaces with varying geometries and during the material removal process restricted regions of these surfaces are eligible to contact the in-process workpiece. In this thesis these regions are analyzed with respect to different tool motions. Later using the results from these analyses the solid, polyhedral and vector based CWE methodologies are developed for a range of different types of cutters and multi-axis tool motions. The workpiece surfaces cover a wide range of surface geometries including sculptured surfaces.

Page generated in 0.0809 seconds