• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparing the Accuracy of Intra-Oral Scanners for Implant Level Impressions Using Different Scanable Abutments

Rathi, Nakul H. January 2014 (has links)
No description available.
12

A methodological framework for virtual testing of IMU-based body-attached sensor networks for gesture recognition

Sanseverino, Giuseppe 11 October 2024 (has links)
This work aims to introduce a methodology for the virtual assessment of inertial measurement unit (IMU)-based Body-Attached Sensor Networks (BASNs) for gesture recognition. This design framework consists of three main parts: (i) multibody modelling of the human upper body, (ii) simulation of human gestures along with data acquisition from modelled IMUs, and (iii) determination of the optimal number of sensors to include in the network along with their placements on the body. By using simulation, the boundary conditions of BASNs can be assessed in a short time without the need for costly and time-consuming user studies.
13

State-of-health estimation by virtual experiments using recurrent decoder-encoder based lithium-ion digital battery twins trained on unstructured battery data

Schmitt, Jakob, Horstkötter, Ivo, Bäker, Bernard 15 March 2024 (has links)
Due to the large share of production costs, the lifespan of an electric vehicle’s (EV) lithium-ion traction battery should be as long as possible. The optimisation of the EV’s operating strategy with regard to battery life requires a regular evaluation of the battery’s state-of-health (SOH). Yet the SOH, the remaining battery capacity, cannot be measured directly through sensors but requires the elaborate conduction of special characterisation tests. Considering the limited number of test facilities as well as the rapidly growing number of EVs, time-efficient and scalable SOH estimation methods are urgently needed and are the object of investigation in this work. The developed virtual SOH experiment originates from the incremental capacity measurement and solely relies on the commonly logged battery management system (BMS) signals to train the digital battery twins. The first examined dataset with identical load profiles for new and aged battery state serves as proof of concept. The successful SOH estimation based on the second dataset that consists of varying load profiles with increased complexity constitutes a step towards the application on real driving cycles. Assuming that the load cycles contain pauses and start from the fully charged battery state, the SOH estimation succeeds either through a steady shift of the load sequences (variant one) with an average deviation of 0.36% or by random alignment of the dataset’s subsequences (variant two) with 1.04%. In contrast to continuous capacity tests, the presented framework does not impose restrictions to small currents. It is entirely independent of the prevailing and unknown ageing condition due to the application of battery models based on the novel encoder–decoder architecture and thus provides the cornerstone for a scalable and robust estimation of battery capacity on a pure data basis.

Page generated in 0.0504 seconds