• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 21
  • 19
  • Tagged with
  • 78
  • 36
  • 29
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Charakterisierung der Multidrug-Efflux-Transporter NorM und AcrAB in Erwinia amylovora

Burse, Antje. Unknown Date (has links)
Universiẗat, Diss., 2003--Marburg.
22

Die Bedeutung des Masernvirus Matrix-Proteins für die Virusfreisetzung und zelltypabhängige Unterschiede seines intrazellulären Transports / The role of measles virus matrix protein for virus release and cell type-specific differences in its intracellular transport

Lehmann, Christine (geb. Pohl) January 2006 (has links) (PDF)
Die Morphogenese von Viruspartikeln und deren Freisetzung aus infizierten Zellen sind späte Schritte im viralen Lebenszyklus. Matrix-Proteine (M) negativsträngiger RNA-Viren und Retroviren, bei denen es sich um periphere Membran-assoziierte Proteine handelt, spielen für diese Prozesse eine besonders wichtige Rolle. Im Verlauf der Masernvirus (MV)-Infektion interagiert das M-Protein mit dem viralen Nukleoproteinkomplex im Innern der Viruspartikel einerseits und mit den viralen Glykoproteinen auf der Oberfläche andererseits. Die Bedeutung des MV M-Proteins für die Partikelproduktion und sein intrazellulärer Transport wurden bislang wenig untersucht. In dieser Arbeit konnte gezeigt werden, dass das MV M-Protein in höhermolekularen Komplexe oligomerisiert und transient mono-ubiquitiniert vorliegt. Beide biochemischen Eigenschaften des M-Proteins sind wahrscheinlich für die Partikelentstehung von Bedeutung, wie durch Studien an M-Protein-Orthologen anderer Viren bereits belegt wurde. Das MV M-Protein assoziierte mit Membranen und speziellen Membranmikrodomänen, sogenannten Detergenz-resistenten Membranfraktionen (DRMs), und vermittelte nach transienter Expression in Fibroblasten die Produktion Virus-ähnlicher Partikel (virus-like particles, VLPs). Es ist beschrieben, dass umhüllte Viren präferenziell aus DRMs freigesetzt werden. Die Koexpression des MV-Glykoproteins F erhöhte den Anteil mit DRM-assoziierten M-Proteins um ein Vierfaches, steigerte jedoch, wie auch das H-Protein, die Effizienz der VLP-Freisetzung nicht. Überraschenderweise waren beide jedoch selbst in der Lage VLPs zu induzieren. Die Effizienz der VLP-Produktion war gering und entsprach der der Viruspartikelfreisetzung. Dendritische Zellen (DCs) sind für MV semipermissiv. Obwohl alle viralen Proteine synthetisiert werden, wird kein infektiöses Virus freigesetzt. In dieser Arbeit konnte gezeigt werden, dass die intrazelluläre Lokalisation der M-, H- und N-Proteine dramatisch von der in der produktiv infizierbaren Fibroblastenzelllinie HeLa abweicht. Während in infizierten HeLa-Zellen das M-Protein mit Lamp-1-positiven späten Endosomen kolokalisierte, akkumulierten in DCs alle untersuchten viralen Proteine in einem spät endosomalen Kompartiment, das das Tetraspanin CD81, aber nicht Lamp-1, enthielt und möglicherweise an der MHC-Klasse-II-abhängigen Antigenpräsentation beteiligt ist. / Morphogenesis of viral particles and their release from infected cells are late steps in viral life cycle. Matrix (M) proteins of negative-stranded RNA viruses and retroviruses, which are peripheral membrane-associated proteins, play a crucial role in these processes. During measles virus (MV) infection the M protein interacts both with the viral nucleoprotein complex and viral glycoproteins. So far, little is known about the importance of the MV M protein for particle production and its intracellular transport. This work shows that the MV M protein oligomerises to higher molecular complexes and is transiently mono-ubiquitinated. These biochemical properties of the protein are likely to be of importance for particle formation as has been shown in studies with M protein orthologues of other viruses. The M protein associates with membranes and specialized membrane microdomains, so called detergent-resistant membrane fractions (DRMs), and triggers the production of virus-like particles (VLPs) after transient expression in fibroblasts. It has been described that enveloped viruses preferentially bud from DRMs. Coexpression of the glycoprotein F increased the fraction of M protein associated with DRMs about four-fold, though the efficiency of VLP release was unaffected by coexpressed F and H glycoproteins, respectively. Surprisingly, both glycoproteins individually promoted VLP formation on their own. The efficiency of VLP production was low and corresponded almost exactly to that of viral particles. Dendritic cells (DCs) are semipermissive to MV infection. Though all viral proteins are synthesized, almost no infectious virus is released indicating a block in a late step of the viral life cycle. This work shows that the intracellular localization of M, H and N proteins differs dramatically from that observed in the productively infectable fibroblast HeLa cell line. While in infected HeLa cells the M protein colocalized with Lamp-1-positive late endosomes, in DCs all investigated viral proteins accumulated in a Lamp-1-negative late endosomal compartment that contained the tetraspanin CD81, which is potentially involved in MHC class II-loading and antigen presentation.
23

Das RpoS-Protein aus Vibrio cholerae : Funktionsanalyse und Charakterisierung der Proteolyse-Kaskade / The RpoS protein of Vibrio cholerae : Functional analysis and characterization of the proteolysis cascade

Halscheidt, Anja January 2007 (has links) (PDF)
In der vorliegenden Arbeit wurde zunächst die Konservierung bekannter RpoS-assoziierter Funktionen für das V. cholerae Homolog untersucht. Dabei ergab die phänotypische Analyse der rpoS-Deletionsmutante, dass analog zu der Bedeutung als Regulator des Stationärphasen-Wachstums in E. coli, definierte Zelldichte-abhängige Eigenschaften in V. cholerae gleichermaßen der Kontrolle von RpoS unterliegen. In weiterführenden Experimenten konnte daraufhin die Konservierung der entsprechenden Promotorstrukturen über die funktionelle Komplementierung rpoS-abhängiger Gene durch das jeweils speziesfremde Protein aufgedeckt werden. Dahingegen konnte die Bedeutung von RpoS bei der Ausprägung der generellen Stress-Resistenz u. a. in E. coli für das V. cholerae Homolog über den gewählten experimentellen Ansatz nicht belegt werden. So wurden in Survival-Assays für keine der getesteten Stress-Bedingungen signifikante Unterschiede zwischen rpoS-Mutante und Wildtyp ermittelt. Die in E. coli gezeigte intrazelluläre Anreicherung des Sigmafaktors unter diversen Stress-Situationen konnte ebenfalls nicht nachgewiesen werden. Hinsichtlich der potentiellen Stellung von RpoS als globaler Regulator für Virulenz-assoziierte Gene, unterstützen und ergänzen die Ergebnisse der vorliegenden Arbeit die gegenwärtige Theorie, wonach RpoS das Ablösen der V. cholerae Zellen vom Darm-Epithel fördert. Die postulierte Bedeutung des alternativen Sigmafaktors in der letzten Phase der Pathogenese wurde über die RpoS-abhängige Sekretion der Mukin-degradierenden Protease HapA und die hier unabhängig nachgewiesene Transkriptionskontrolle von Chemotaxis-Genen bestätigt. In E. coli gilt als entscheidender Parameter für die dargelegten RpoS-Funktionen die intrazelluläre Konzentration des Masterregulators. Deshalb war ein weiteres zentrales Thema dieser Arbeit die Regulation des RpoS-Levels in V. cholerae. Neben der Identifizierung von Bedingungen, welche die RpoS-Expression beeinflussen, wurde vorrangig der Mechanismus der Proteolyse analysiert. Dabei wurden als RpoS-degradierende Komponenten in V. cholerae die Homologe des Proteolyse-Targetingfaktors RssB und des Protease-Komplexes ClpXP identifiziert. Die weitere Untersuchung der RpoS-Proteolyse ergab außerdem, dass bestimmte Stress-Signale den Abbau stark verzögern. Interessanterweise resultierten die gleichen Signale jedoch nicht in der Akkumulation von RpoS. Als weiterer Unterschied zu der bekannten Proteolysekaskade in E. coli zeigte sich, dass das V. cholerae Homolog der RssB-aktivierenden Kinase ArcB (FexB) an der RpoS-Proteolyse nicht beteiligt ist. Indessen deuten die Ergebnisse weiterführender Experimente auf den Einfluss der Kinasen CheA-1 und CheA-3 des V. cholerae Chemotaxis-Systems auf die RpoS-Degradation. Aus diesem Grund wurde in der vorliegenden Arbeit ein zu E. coli abweichendes Modell der RpoS-Proteolyse postuliert, in welchem die aktiven CheA-Kinasen den Targetingfaktor RssB phosphorylieren und somit den Abbau einleiten. Die Beteiligung von MCP-Rezeptoren an der Kontrolle der intrazellulären RpoS-Konzentration und damit an der Transkription der Chemotaxisgene selbst, beschreibt erstmalig ein Regulationssystem, wonach innerhalb der Chemotaxis-Kaskade die Rezeptoraktivität wahrscheinlich über einen positiven „Feedback-Loop“ mit der eigenen Gen-Expression gekoppelt ist. Darüber hinaus deutete sich die Beteiligung der ATP-abhängigen Protease Lon an der RpoS-Proteolyse-Kaskade in V. cholerae an. Die Inaktivierung der in E. coli unter Hitzeschock-Bedingungen induzierten Protease resultierte in einem extrem beschleunigten RpoS-Abbau. Ein letztes Teilprojekt dieser Arbeit adressierte die Regulationsmechanismen der V. cholerae Osmostress-Adaptation. Während in E. coli der alternative Sigmafaktor dabei eine zentrale Rolle spielt, konnte die Beteiligung des V. cholerae RpoS an der Osmostress-Regulation jedoch nicht aufgedeckt werden. Dafür ergab die Funktionsanalyse eines neu definierten Osmostress-Sensors (OsmRK) die Kontrolle von ompU durch dieses Zwei-Komponentensystems unter hypertonen Bedingungen. Dieses Ergebnis überraschte, da bislang nur der Virulenzfaktor ToxR als Regulator für das Außenmembranporin beschrieben wurde. Die nachgewiesene ompU-Transkriptionskontrolle durch zwei Regulatoren führte zu der Hypothese eines unbekannten regulativen Netzwerkes, welchem mindestens 52 weitere Gene zugeordnet werden konnten. Insgesamt ist festzuhalten, dass die in dieser Arbeit durchgeführte molekulare Charakterisierung der RpoS-Proteolyse in V. cholerae Beweise für eine mögliche Verbindung zwischen der Transkriptionskontrolle für Motilitäts- und Chemotaxisgene mit der Chemotaxis-Reizwahrnehmung erbrachte. Eine derartige intermolekulare Verknüpfung wurde bislang für keinen anderen Organismus beschrieben und stellt somit eine neue Variante der Signaltransduktion innerhalb der Virulenz-assoziierten Genregulation dar. / In the present work conserved function of RpoS in E. coli was approached for its homolog in V. cholerae. Comprehensive phenotypical analysis of rpoS-mutant and wildtype revealed the involvement of RpoS in growth-phase-dependent processes, according to RpoS-function as stationary phase regulator in E. coli. In further experiments the conservation of RpoS-promoters in both species could be shown. To the contrary, the well-known function of E. coli RpoS as general stress-regulator could not be demonstrate for V. cholerae: By testing several stress conditions in survival assays, no significant differences were determined between rpoS mutant and wildtype. Additionally, the intracellular mode of RpoS accumulation in E. coli due to different stress conditions was also not observed in V. cholerae. Regarding the putative role of RpoS as a regulator for virulence-associated genes, the inhere described data support and complement the current theory of RpoS being involved in mucosal detachment of V. cholerae cells. In E. coli the intracellular concentration of RpoS is a decisive parameter for its described function. So far the homologs of the proteolysis targeting factor RssB and the ATP-depending terminal protease complex ClpXP were identified to be involved in V. cholerae RpoS-proteolysis. Further characterization also unravelled, that various stress signals slow down that degradation. But such conditions did not yield in the RpoS accumulation. Based on these differences to the E. coli dynamics of RpoS-degradation additional investigations were performed to gain more insights into the regulatory path of RpoS degradation in V. cholerae. In E. coli the ArcB kinase ist the sensor kinase for regulating the activity of RssB. In this study fexB was identified as arcB homolog in V. cholerae. But by monitoring the RpoS stability in the corresponding knock-out mutant no effect could be observed. Therefore the ArcB-system is not influencing RpoS stability in V. cholerae. Knowing, that RpoS is a major regulator for motility and chemotaxis in V. cholerae, it was investigated next whether other signal-kinases are involved in RpoS proteolysis. Thereby, the known chemotaxis kinases were tested. Knockout mutants of cheAs and subsequent analysis of RpoS half-life revealed, that cheA-1 and cheA-3 did alter RpoS proteolysis to slow down the degradation, whereas cheA-2 mutant did not. Therefore, it can be postulated, that a different mode of RpoS-proteolysis is operating in V. cholerae in which active CheA-1 and CheA-3 may be responsible for RssB phosphorylation, hence leading to RpoS degradation. That kind of interaction may also include the output signalling of the MCP-receptors regulating CheA kinase activity. Since the cheA genes are also under transcriptional control by RpoS a new regulation system can be postulated, where MCP signal output links transcriptional regulation of motility and chemotaxis via RpoS stability in a “positive feedback loop”. Additionally, data are presented, where the ATP depending protease Lon is also involved in RpoS proteolysis in an inverted manner. Lon, which in E. coli is a heat shock induced protease, seems to recognize and degrade substrates in V. cholerae operating in RpoS degradation in the RssB-depending branch. That phenotype was observed as an accelerated RpoS degradation in a lon background. Finally, the complex regulatory pathway of osmo-regulation was characterized. In E. coli RpoS plays a central role. However, in V. cholerae RpoS could not be identified to participate in osmo-regulation, instead a new defined osmostress-sensor (OsmRK) was characterized. In first analysis, it was found that osmRK knockout mutants showed a deregulated ompU expression under hyperosmotic conditions. Considering, that so far only the well known virulence regulator ToxR was identified to act on the ompU promoter, a novel regulatory network was suggested, which regulates at least further 52 genes. In summary, the components of RpoS proteolysis in V. cholerae were unravelled and characterized. Additionally, evidence could be gathered, which indicates a linkage between transcriptional control of motility and chemotaxis genes and the chemotaxis-signalling pathway. So far, such an regulatory pathway has not been described before and would represent a novel branch of signal transduction in bacteria.
24

Virulenzregulationskaskade und Chitobiose-Metabolismus in Vibrio cholerae / Virulence gene regulation and chitobiose-metabolism in Vibrio cholerae

Berg, Thorsten January 2008 (has links) (PDF)
Vibrio cholerae, der Erreger der gastrointestinalen Erkrankung Cholera, ist ein Gram- negatives, fakultativ anaerobes gekrümmtes Stäbchenbakterium und zugleich der wohl bekannteste Vertreter der Familie Vibrionaceae. Es persisitiert die meiste Zeit in aquatischen Ökosystemen wie Flüssen, Seen oder Meeresküsten, wo das Bakterium meist mit Crustaceen oder anderen Organismen mit Chitin-haltigen Oberflächen assoziiert vorliegt. Über orale Aufnahme kontaminierter Lebensmittel oder von Wasser kann das Bakterium in den menschlichen Organismus gelangen und dort den oberen Dünndarmbereich kolonisieren, wo letztlich durch verschiedene Virulenzfaktoren, aber hauptsächlich durch das Cholera-Toxin, die Symptomatik der Cholera ausgelöst wird. V. cholerae ist somit sowohl in seiner natürlichen Umgebung, als auch im humanen Wirt höchst unterschiedlichen Umweltbedingungen ausgesetzt. Diese alternierenden Umweltreize stellen verschiedene Anforderungen an die Expressions- und Regulationsfähigkeiten von Proteinbiosynthesen des Bakteriums dar. Die Notwendigkeit einer raschen Adaption setzt daher vielfältige und komplexe Genregulationsmechanismen voraus. Im ersten Teil der hier vorliegenden Arbeit sollte die Genregulation des chs-Operons untersucht werden. Als Grundlage dienten hierbei Hinweise, nach welchen dieses Operon als putatives PTS eine Rolle für den Metabolismus von dem Chitin-Derivat Chitobiose spielen könnte. Zudem sollte der Einfluss des aus Escherichia coli bekannten Repressors Mlc auf die Expression des Operons tiefer gehend untersucht werden. Im Rahmen dieser Arbeit war es gelungen, das als ChsR benannte Protein eindeutig als spezifischen LacI-ähnlichen Repressor für das chs-Operon zu bestätigen. Weiter konnte auch eine cAMP-abhängige Expressionsinduktion bestätigt werden, welche sich allerdings nur bei inaktiven ChsR durchsetzen kann. Als spezifischer Induktor für den Repressor ChsR konnte Chitobiose (GlcN)2 identifiziert werden, welches zwar bei dem in dieser Arbeit verwendeten O1-Stamm SP27459-S nicht als alleinige Kohlenstoffquelle dienen kann, aber unter induktiven Konzentrationen die Repressoreigenschaft von ChsR inhibiert. Zugleich konnte ChsC als für den Import des Induktors Chitobiose verantwortliches Protein identifiziert werden. Weiter nicht eindeutig zu klären blieb der Einfluss von Mlc auf das chs-Operon. Zwar konnte der aktivierende Effekt von Mlc auf die chs-Expression durch Komplementation bestätigt werden, der genaue Mechanismus bleibt jedoch weiterhin unbekannt und bedarf weiterer Untersuchungen. Einzig der Einfluss von Mlc auf den Chitobiose-Import konnte ausgeschlossen werden. Im zweiten Teil dieser Arbeit sollte der weitaus komplexere Mechanismus der Virulenzgenregulation untersucht werden. Im Fokus stand hierbei der Hauptvirulenz-genregulator ToxR und dessen Abhängigkeit von der periplasmatischen Protease DegS. Anhand unterschiedlicher Experimente auf Promotoraktivitäts-, mRNA- und Proteinebene konnte eine Abnahme der ToxR-Aktivität in der degS-Knockout Mutante beobachtet werden, was auf eine Aktivierung von ToxR durch DegS schließen lässt. Weiter konnte eine Abhängigkeit der Aktivität von ToxR von der ebenfalls DegS-abhängigen RpoE-Signalkaskade ausgeschlossen werden. Auch konnte gezeigt werden, dass die Integrität von ToxR durch ToxS, nicht aber durch DegS bestimmt wird. Der exakte Mechanismus der DegS-induzierten ToxR-Aktivierung konnte im Rahmen dieser Arbeit nicht mehr ermittelt werden. Es wurden jedoch Hinweise darauf gewonnen, dass eine direkte ToxR-DegS-Interaktion im periplasmatischen Raum stattfinden könnte. Die in dieser Arbeit gewonnen Erkenntnisse hinsichtlich der ToxR-Regulation durch DegS bieten sowohl eine interessante neue Perspektive der Funktionsweise der periplasmatischen Protease DegS, als auch eine breite Grundlage für weitergehende Untersuchungen bezüglich der Aktivierung des wichtigsten Virulenzregulators ToxR in V. cholerae. / Vibrio cholerae, the causative agents of the gastrointestinal disease cholera, is a Gram-negative facultative anaerobic curved bacterium. It further is probably the best characterized member of the family Vibrionaceae. V. cholerae mainly persists in aquatic ecosystems such as rivers, lakes or sea-coasts where it is found associated with crustaceae and other organisms exposing chitin-containing surfaces. The bacterium infects the human organism via the oral uptake pathway by ingestion of contaminated food or water. Subsequently, it colonizes the upper part of the small intestine and there it eventually causes the typical symptoms of cholera. Thus, both in its natural surrounding and within the human host, V. cholerae faces dramatically alternating environmental conditions. These challenges exhibit different demands and flexibility to alteration of protein expression. This necessity for efficient adaption requires manifold and complex mechanisms of gene regulation. In the first part of the study presented here, the gene regulation of the chs-operon has been examined. In the forefront of this examination there were indications that this operon may play a role as a putative PTS for the metabolism of the chitin-derivate chitobiose. Furthermore, the influence of the in Escherichia coli well-known repressor Mlc on the expression of the operon has been determined. Within this study the protein termed ChsR could be confirmed as a specific LacI-similar repressor type protein for the chs-operon. Also, a cAMP-dependend induction of expression could be verified, which however, can only be achieved when ChsR is inactive. Chitobiose (GlcN)2 has been identified as the specific inductor for the repressor ChsR. This inductor substrate cannot be used as the only carbon-source for the O1-strain SP27459-S, but is able to act on the repressor ChsR under inductive concentrations to cause depression on the chs-operon. Furthermore, ChsC could be identified to be responsible for the import of the inductor chitobiose. The influence of Mlc on the chs-operon could not be elucidated. Even though the activating effect of Mlc on the chs-expression has been confirmed via complementation analysis, however the exact mechanism remains unknown and needs further investigations. Finally, an influence of Mlc on the import of chitobiose could be ruled out. In the second part of this study a far more complex mechanism of virulence gene expression has been investigated. The examinations concentrated on the main virulence regulator ToxR, which is involved in gene regulation of cholera-toxin genes and others, and its dependence on the periplasmatic protease DegS. On the basis of various experiments a decrease of ToxR-activity in a degS-knockout mutant could be observed on promoter-activity-, mRNA- and protein level, utilizing the ToxR dependent regulated porin OmpU. The obtained results clearly indicated that an activation of ToxR via interaction with DegS seems possible. Furthermore, a dependence of ToxR-activity on the DegS-dependent RpoE-signal cascade could be ruled out. Also it could be demonstrated that the integrity of ToxR is maintained by ToxS, but not by DegS. However, the exact mechanism of the DegS-induced activation of ToxR could not be determined within this study and should be investigated in future. So far only genetic derived indications have been gained that there is direct interaction between ToxR and DegS in the periplasmic space, a proof by protein/protein interaction is still lacking. The findings summarized in this study addressing the regulation of ToxR via DegS present an interesting new perspective of the function of the periplasmic protease DegS involved in affecting a general virulence regulatory pathway. Moreover, the data will serve as the basis for further investigations on the molecular mechanism of activation and signal transduction of the most important virulence factor ToxR in V. cholerae.
25

Einfluss der Phosphoenolpyruvat-Phosphotransferasesysteme auf die Aktivität des Virulenzgenregulators PrfA von Listeria monocytogenes / Impact of the phosphoenolpyruvate phosphotransferasesystems on the activity of the virulence gene regulator PrfA of Listeria monocytogenes

Stoll, Regina January 2008 (has links) (PDF)
Die PrfA-Aktivität im L. monocytogenes Stamm EGD sowie dessen prfA Deletionsmutante mit dem prfA- bzw. prfA*-Gen unter Kontrolle des prfA-Promotors auf dem High-Copy Plasmid pERL3 wurde nach Wachstum in BHI, LB (Luria-Bertani Medium) und definiertem MM untersucht. Die Medien waren versetzt mit 50 mM der PTS-Kohlenstoffquellen Glucose, Mannose oder Cellobiose oder mit der Nicht-PTS-Kohlenstoffquelle Glycerin. Mit dem Wildtyp EGD konnte in BHI und LB mit allen genannten Kohlenstoffquellen nur eine geringe PrfA-Aktivität beobachtet werden. In MM dagegen war die PrfA-Aktivität in Anwesenheit von Glycerin stark erhöht und mit Cellobiose als einziger Kohlenstoffquelle stark reprimiert. Mit dem PrfA*-überexprimierenden Stamm wurden unter allen Bedingungen hohe PrfA-Aktivität gefunden. EGDΔprfApPrfA zeigte dagegen trotz gleicher PrfA-Menge wie EGDΔprfApPrfA* nur in BHI eine hohe PrfA-Aktivität. Die Zugabe des Amberlites XAD4 in LB erhöht die reduzierte PrfA-Aktivität in EGDΔprfApPrfA und in MM verstärkt XAD4-Zugabe die PrfA-Aktivität des Wildtyps. Eine ptsH-Mutante ist in LB und MM unabhängig von der Zugabe einer der vier Kohlenstoffquellen nicht in der Lage zu wachsen (Stoll et al., 2008), was darauf hin deutet, dass die Aufnahme der verwendeten Kohlenstoffquelle und auch der Glycerinstoffwechsel von einem intakten PTS-Weg abhängig sind. In BHI stehen dagegen offensichtlich noch PTS-unabhängige Kohlenstoffquellen zur Verfügung, da die ptsH-Mutante in BHI noch wachsen kann. Dies unterstützt auch die Beobachtung, dass die Generationszeiten von L. monocytogenes in LB und vor allem MM im Vergleich zu BHI wesentlich länger sind. Expressionsdaten der PTS-Gene wurden von allen drei Stämmen unter verschiedenen Wachstumsbedingungen erstellt. Die Daten deuten darauf hin, dass die PrfA-Aktivität mit der Expressionsstärke und dem Phosphorylierungsstatus bestimmter PTS-Permeasen zusammenhängt. PTS-Permeasen bestehen immer aus mindestens drei Domänen, der Membran überspannenden Zucker transportierenden Domäne EIIC (und EIID im Falle von Mannose spezifischen PTS) und den zwei im Zytosol löslichen Komponenten EIIA und EIIB. EIIA wird direkt von HPr-His-P phosphoryliert, welches sein Phosphat von dem von PEP phosphorylierten EI empfängt. Das PTS spielt neben der Zuckeraufnahme eine Rolle in vielen regulatorischen Vorgängen in der Bakterienzelle, unter anderem in der Pathogenese (Barabote and Saier, 2005; Deutscher et al., 2006; Postma et al., 1993). Listerien codieren für alle sieben bekannten PTS-Familien, 86 Gene codieren für 29 komplette und einige unvollständige PTS. Trotz der großen Anzahl an PTS-Genen besitzt L. monocytogenes kein vollständiges PtsG, welches homolog zu E. coli oder B. subtilis ist, sondern nur ein EIIAGlc. Um die an der Glucoseaufnahme involvierten PTS-Permeasen zu identifizieren und einen möglichen Zusammenhang zwischen diesen PTS-Permeasen und der PrfA-Aktivität zu untersuchen, wurden in dieser Arbeit systematisch PTS-Permeasen deletiert, welche für putative Beta-Glucosid-PTS (PTSGlc), Mannose-PTS (PTSMan) und Cellobiose-PTS (PTSLac) codieren. Diese Deletionsmutanten wurden bezüglich ihres Wachstumes in Gegenwart der entsprechenden PTS-Zucker und die PrfA-Aktivität untersucht. Deletionen von in L. monocytogenes EGD-e nur schwach exprimierten PTSGlc haben keinen Einfluss auf das Wachstum in MM mit 10 mM Glucose oder Cellobiose. Von den vier exprimierten PTSMan sind zumindest zwei eindeutig in der Lage, Glucose zu transportieren, und die Deletion dieser PTS-Permeasen, codiert von lmo0096-0098 und lmo0781-0784, erhöht sehr deutlich die Expression des im Wildtyp wenig exprimierten Gens für die PTS-Permease PTSGlc(lmo0027). Für den Cellobiose-Transport scheint von den sechs vollständigen PTSLac-Permeasen vor allem PTSLac(lmo2683-2685) und nach Deletion dieses Operons, ebenfalls die PTSGlc(lmo0027)-Permease wichtig zu sein. Obwohl die multiple Deletion dieser für die Glucose/Mannose- bzw. Cellobiose-Aufnahme in L. monocytogenes wichtigen PTS-Permeasen das Wachstum in definiertem MM drastisch reduziert, haben diese Deletionen offensichtlich keine Auswirkung auf das intrazelluläre Wachstum, da die Infektionsrate so effizient ist wie die des Wildtyps. Auf PrfA hat die schrittweise Deletion der Glucose/Mannose-spezifischen PTS-Permeasen nach Wachstum in MM mit Glucose als einziger Kohlenstoffquelle eine aktivierende Wirkung, jedoch keine Auswirkung nach Wachstum in Cellobiose-haltigem MM. Umgekehrt verhält es sich mit den PTSLac-Deletionsmutanten. In vitro Transkriptionsstudien mit (teilweise phosphoryliert) aufgereinigten Lmo0096 (EIIABMan) und Lmo1017 (EIIAGlc) -Proteinen deuten auf eine direkte Interaktion zwischen PrfA und bestimmten EII-Proteinen hin. Dies konnte für Lmo0096 auch in Immunpräzipitationsassays gezeigt werden. Eine Überexpression von Lmo0096 führte zudem zu einer sehr deutlichen Reduktion der PrfA-Aktivität nach Wachstum in MM mit Glucose. / In this study the PrfA activity was assessed in L. monocytogenes strain EGD and its isogenic deletion mutant (EGDΔprfA) with the prfA or prfA* gene under the control of the prfA promoter located on the high copy plasmid pERL3 (strains EGDΔprfApPrfA and EGDΔprfApPrfA*) after growth in BHI, LB (Luria-Bertani broth) and defined minimal medium. Media were supplemented with 50 mM of the PTS carbon sources glucose, mannose or cellobiose or with the non-PTS carbon source glycerol. In the wild type EGD grown in BHI and LB a low PrfA activity was observed with all of the above carbon sources. In MM PrfA activity was strongly increased in the presence of glycerol and strongly decreased with cellobiose as sole carbon source. In the PrfA* overexpressing strain EGDΔprfApPrfA* high PrfA activity was detected under all conditions. EGDΔprfApPrfA exhibited a high activity only in BHI, though PrfA amounts were equally high as in EGDΔprfApPrfA*. Addition of the amberlite XAD4 to LB increases the reduced PrfA activity in EGDΔprfApPrfA and the activity of the wildtype in MM. A ptsH mutant is unable to grow in LB and MM irrespective of the supplementation with the four carbon sources (Stoll et al., 2008), indicating that the uptake of the carbon source used as well as the glycerol metabolism are dependent on an intact PTS pathway. In contrast, BHI obviously possesses PTS independent carbon sources, as the ptsH mutant is still able to grow in BHI. This is also confirmed by the fact that L. monocytogenes generation times are significantly longer in LB and even more in MM as compared to BHI. Expression of the PTS genes was assessed in all three strains upon different growth conditions. The data suggest that PrfA activity is correlated with the expression level and the phosphorylation state of specific PTS permeases. PTS permeases always consist of at least three domains, the membrane crossing sugar transporting domain EIIC (and EIID in mannose specific PTS) and the two cytosolic components EIIA and EIIB. EIIA is directly phosphorylated by HPr-His-P which receives its phosphate group from EI which is phosphorylated by PEP. Aside from sugar transport PT Systems are involved in a variety of regulatory processes in the bacterial cell, e.g. in pathogenesis (Barabote and Saier, 2005; Deutscher et al., 2006; Postma et al., 1993). Listeria code for all of the seven known PTS families with 86 genes coding for 29 complete and several incomplete PTS. Despite the large number of PTS genes L. monocytogenes does not possess a complete PtsG homologue to E. coli or B. subtilis but only an orphan EIIAGlc. To identify the PTS permeases involved in glucose uptake and to investigate a possible role in PrfA regulation, mutants with deletions of beta glucoside PTS (PTSGlc), mannose PTS (PTSMan) and cellobiose PTS (PTSLac) permeases have been analyzed systematically in this study. These deletion mutants were analyzed in respect to their growth upon the respective PTS sugars and to their PrfA activity. Deletion of the five PTSGlc permeases only weakly expressed in L. monocytogenes EGD-e had no impact on growth in MM with 10 mM glucose or cellobiose. At least two out of the four expressed PTSMan permeases are able to transport glucose and the deletion of these PTS (encoded by lmo0096-0098 and lmo0781-0784) causes a significant increase in expression of the PTSGlc(lmo0027) permease, which is expressed at a low level in the wildtype. For transport of cellobiose, only PTSLac(lmo2683-2685) out of the six complete PTSLac permeases and, after deletion of this operon, PTSGlc(lmo0027) seem to be of importance. Although multiple deletions of the PTS important for glucose/mannose and cellobiose uptake have severe consequences on growth in defined MM, obviously intracellular life is not affected, as infection rates resemble those of the wild type. PrfA is activated by the stepwise deletion of the glucose/mannose specific PTS upon growth in MM supplemented with glucose, but no effect is seen upon growth in cellobiose supplemented MM. The behavior of the PTSLac deletion mutants is conversely. In vitro transcription studies with (partially phosphorylated) purified Lmo0096 (EIIABMan) and Lmo1017 (EIIAGlc) proteins suggest a direct interaction between PrfA and specific EII proteins. This could be confirmed for Lmo0096 in immuno precipitation assays. An overexpression of lmo0096 lead to a significant reduction of PrfA activity upon growth in MM supplemented with glucose.
26

Bacterial Genome Plasticity and its Role for Adaptation and Evolution of Asymptomatic Bacteriuria (ABU) Escherichia coli Strains / Über die Bedeutung der bakteriellen Genomplastizität für die Adaptation und Evolution asymptomatischer Bakteriurie (ABU) Escherichia coli Isolate

Zdziarski, Jaroslaw Maciej January 2008 (has links) (PDF)
Asymptomatic bacteriuria (ABU) represents the long term bacterial colonization of the urinary tract, frequently caused by Escherichia coli (E. coli), without typical symptoms of a urinary tract infection (UTI). To investigate characteristics of ABU E. coli isolates in more detail, the geno- and phenotypes of eleven ABU isolates have been compared. Moreover, consecutive in vivo re-isolates of the model ABU strain 83972 were characterized with regard to transcriptomic, proteomic and genomic alterations upon long term in vivo persistence in the human bladder. Finally, the effect of the human host on bacterial adaptation/evolution was assessed by comparison of in vitro and in vivo-propagated strain 83972. ABU isolates represent a heterologous group of organisms. The comparative analysis of different ABU isolates elucidated the remarkable genetic and phenotypic flexibility of E. coli isolates. These isolates could be allocated to all four major E. coli phylogenetic lineages as well as to different clonal groups. Accordingly, they differed markedly in genome content, i.e., the genome size as well as the presence of typical UPEC virulence-associated genes. Multi locus sequence typing suggested that certain ABU strains evolved from UPEC variants that are able to cause symptomatic UTI by genome reduction. Consequently, the high E. coli genome plasticity does not allow a generalized view on geno- and phenotypes of individual isolates within a clone. Reductive evolution by point mutations, DNA rearrangements and deletions resulted in inactivation of genes coding for several UPEC virulence factors, thus supporting the idea that a reduced bacterial activation of host mucosal inflammation promotes the ABU lifestyle of these E. coli isolates. Gene regulation and genetic diversity are strategies which enable bacteria to live and survive under continuously changing environmental conditions. To study adaptational changes upon long term growth in the bladder, consecutive re-isolates of model ABU strain 83972 derived from a human colonisation study and from an in vitro long term cultivation experiment were analysed with regard to transcriptional changes and genome rearrangements. In this context, it could be demonstrated that E. coli, when exposed to different host backgrounds, is able to adapt its metabolic networks resulting in an individual bacterial colonisation strategy. Transcriptome and proteome analyses demonstrated distinct metabolic strategies of nutrients acquisition and energy production of tested in vivo re-isolates of strain 83972 that enabled them to colonise their host. Utilisation of D-serine, deoxy- and ribonucleosides, pentose and glucuronate interconversions were main up-regulated pathways providing in vivo re-isolates with extra energy for efficient growth in the urinary bladder. Moreover, this study explored bacterial response networks to host defence mechanisms: The class III alcohol dehydrogenase AdhC, already proven to be involved in nitric oxide detoxification in pathogens like Haemophilus influenzae, was shown for the first time to be employed in defending E. coli against the host response during asymptomatic bacteriuria. Consecutive in vivo and in vitro re-isolates of strain 83972 were also analysed regarding their genome structure. Several changes in the genome structure of consecutive re-isolates derived from the human colonisation study implied the importance of bacterial interactions with the host during bacterial microevolution. In contrast, the genome structure of re-isolates from the in vitro long term cultivation experiment, where strain 83972 has been propagated without host contact, was not affected. This suggests that exposure to the immune response promotes genome plasticity thus being a driving force for the development of the ABU lifestyle and evolution within the urinary tract. / Asymptomatische Bakteriurie (ABU) stellt eine bakterielle Infektion der Harnblase über einen langen Zeitraum dar, die häufig von Escherichia coli hervorgerufen wird, ohne dass typische Symptome einer Harnwegsinfektion auftreten. Um die Charakteristika von ABU E. coli Isolaten genauer zu untersuchen, wurden die Geno- und Phänotypen von 11 ABU-Isolaten verglichen. Außerdem wurden in mehreren aufeinanderfolgenden in vivo-Reisolaten des Modell-ABU Stammes 83972 die Veränderungen im Transkriptom, Proteom und Genom während einer langfristigen Persistenz in der menschlichen Blase charakterisiert. Schließlich wurde der Effekt des menschlichen Wirtes auf die bakterielle Adaptation durch einen Vergleich von in vitro- mit in vivo-kultivierten Stämmen abgeschätzt. ABU-Isolate stellt eine heterogene Gruppe von Organismen dar. Diese können den vier phylogenetischen Hauptgruppen von E. coli sowie unterschiedlichen klonalen Gruppen zugeordnet werden. Dementsprechend unterscheiden sie sich erheblich bezüglich der Zusammensetzung des Genomes, der Genomgröße und auch der Ausstattung mit UPEC-typischen Virulenz-assoziierten Genen. Multi-Lokus-Sequenz-Typisierung legt nahe, dass bestimmte ABU Stämme sich durch Genomreduktion aus UPEC Stämmen entwickelt haben, die eine Harnwegsinfektion mit charakteristischen Symptomen auslösen konnten. Folglich erlaubt die hohe Genomplastizität von E. coli keine generalisierte Betrachtung einzelner Isolate eines Klons. Genomreduktion über Punktmutationen, Genom-Reorganisation und Deletionen resultierte in der Inaktivierung einiger Gene, die für einige UPEC Virulenz-Faktoren kodieren. Dies stützt die Vorstellung, dass eine verminderte bakterielle Aktivierung der Entzündung der Wirtsschleimhaut den Lebensstil von ABU (bei diesen E. coli-)Isolaten fördert. Genregulation und genetische Diversität sind Strategien, die es Bakterien ermöglichen unter sich fortlaufend ändernden Bedingungen zu leben bzw. zu überleben. Um die anpassungsbedingten Veränderungen bei einem langfristigen Wachstum in der Blase zu untersuchen, wurden aufeinanderfolgende Reisolate, denen eine langfristige in vivo-Kolonisierung im menschlichen Wirt beziehungsweise eine in vitro-Kultivierung vorausgegangen ist, im Hinblick auf Veränderungen Genexpression und Genomorganisation analysiert. In diesem Zusammenhang konnte gezeigt werden, dass E. coli in der Lage ist, seine metabolischen Netzwerke verschiedenen Wachstumsbedingungen anzupassen und individuelle bakterielle Kolonisierungsstrategien entwickeln kann. Transkriptom- und Proteom-Analysen zeigten verschiedene metabolische Strategien zur Nährstoffbeschaffung und Energieproduktion bei untersuchten in vivo-Reisolaten vom Stamm 83972, die es ihnen ermöglichen, den Wirt zu kolonisieren. Das Zurückgreifen auf D-Serin, Deoxy- und Ribonucleoside sowie die bidirektionale Umwandlung zwischen Pentose und Glucuronat waren hoch-regulierte Stoffwechselwege, die die in vivo-Reisolate mit zusätzlicher Energie für ein effizientes Wachstum in der Blase versorgen. Zudem wurden in dieser Studie die Netzwerke für eine Reaktion auf Abwehrmechanismen des Wirtes erforscht: Erstmals wurde hier die Rolle der Klasse-III-Alkoholdehydrogenase AdhC, bekannt durch ihre Bedeutung bei der Entgiftung von Stickstoffmonoxid, bei der Wirtsantwort während einer asymptomatischen Bakteriurie gezeigt. Aufeinanderfolgende in vivo- und in vitro-Reisolate vom Stamm 83972 wurden ebenfalls bezüglich ihrer Genomstruktur analysiert. Einige Veränderungen in der Genomstruktur der aufeinanderfolgenden Reisolate, die von einer humanen Kolonisierungsstudie stammen, implizieren die Bedeutung einer Interaktion der Bakterien mit dem Wirt bei der Mikroevolution der Bakterien. Dagegen war die Genomstruktur von Reisolaten eines langfristigen in vitro-Kultivierungsexperiments, bei dem sich der Stamm 83972 ohne Wirtskontakt vermehrt hat, nicht von Veränderungen betroffen. Das legt nahe, dass die Immunantwort eine Genomplastizität fördert und somit eine treibende Kraft für den ABU Lebensstil und die Evolution im Harnwegstrakt ist.
27

Die Bedeutung von Mutationen im Hämagglutinin des Masernvirus für Neurovirulenz und Antikörpererkennung / The role of mutations in the hemagglutinin of measles virus for neurovirulence and antibody recognition

Möller, Kerstin January 2002 (has links) (PDF)
Masernvirus (MV) ist ein negativ-strängiges RNA-Virus, das im Menschen und im Nagermodell zu akuten und subakuten Enzephalitiden führen kann. Es wurde beschrieben, dass bestimmte Antikörperescape-Mutanten des MV neurovirulent, andere nicht neurovirulent sind (Liebert et al., 1994). Mit Hilfe von rekombinanten Masernviren, konnte ich diejenigen Aminosäuren charakterisieren, die einerseits für die Bindung monoklonaler, neutralisierender anti-MV-H-Antikörper (K29, K71, Nc32 und L77) und andererseits für die Neurovirulenz verantwortlich sind. Bei den rekombinanten MV wurde das von Duprex et al. (1999) als Neurovirulenz vermittelnd beschriebene H-Gen des nagerhirnadaptierten neurovirulenten CAM/RB-Stammes in das Grundgerüst des nicht neurovirulenten Edtag (molekularer Klon des Vakzinestammes Edm) kloniert. Über gerichtete Mutagenese wurden die jeweiligen Mutationen in dieses CAM/RB H-Gen eingefügt. Mittels der FACS-Analyse konnten die Aminosäureänderungen identifiziert werden, die für die Bindung der jeweiligen Antikörper verantwortlich sind. Sie befinden sich nach einem Strukturmodell der H-Proteine (Langedijk et al., 1997) im Membran-distalen Teil, den so genannten Propellern. Im Einzelnen sind folgende Aminosäureänderungen im Hämagglutinin-Protein für den Escape verantwortlich: L77 – 377 Arg -> Gln und 378 Met -> Lys; Nc32 – 388 Gly -> Ser; K71 – 492 Glu -> Lys und 550 Ser -> Pro; K29 – 535 Glu -> Gly. Es konnte ferner gezeigt werden, dass die beiden Aminosäureveränderungen an den Positionen 195 und 200 gemeinsam für die Neurovirulenz verantwortlich sind und nicht assoziiert sind mit den Mutationen für den Antikörperescape. Der Aminosäureaustausch an Position 200 bei neurovirulenten Viren führt zum Verlust einer benutzten Glykosylierungsstelle. Diese Mutation ist jedoch nicht alleine für das unterschiedliche Neurovirulenzverhalten der Viren verantwortlich, sondern es muss gleichzeitig der Austausch an Position 195 vorhanden sein, der eine positive Ladung im H-Molekül entfernt. Diese beiden Mutationen sind nach dem Strukturmodell nach Langedijk im Stamm2-Bereich angesiedelt. Sind im H-Protein an Stelle 195 und 200 die Aminosäuren Gly und Ser vorhanden, so findet im Gehirn neugeborener Lewis-Ratten eine verstärkte Virusvermehrung und Ausbreitung statt, die die akute Enzephalitis mit Expression typischer proinflammatorischer Zytokine zur Folge hat. Werden an Stelle 195 und 200 die Aminosäuren Arg und Asn exprimiert, so ist der Verlauf der Infektion inapparent. In dieser Arbeit wurde auch ein Zellkultursystem gemischter Hirnzellen neugeborener Lewis-Ratten etabliert, das die Unterschiede der Virusausbreitung in vivo reflektiert und mit dem weitere Untersuchungen zum Mechanismus der Neurovirulenz durchgeführt werden könnten. Anhand der durchgeführten Untersuchungen mit Ratten des CD46 transgenen Lewis-Modells konnte gezeigt werden, dass die Anwesenheit des Rezeptors CD46 das Virulenzverhalten der getesteten Viren nicht beeinflusst. Weder mit dem Vakzinestamm Edm noch mit einem nicht an Nager adaptierten Wildtypstamm, konnte nach intracerebraler Injektion eine akute Enzephalitis induziert werden. Die Untersuchungen zeigen, dass die Neurovirulenz des an Nager-adaptierte MV-Stammes CAM/RB essentiell von den Aminosäuren Gly und Ser an Position 195 und 200 im H-Protein abhängt und nicht durch die transgene Expression zellulärer Rezeptoren für MV vermittelt werden kann. / Measles virus (MV) is a negative stranded RNA-virus, which may lead to acute and subacute encephalitis in men and experimentally also in rodents. It has been described that certain antibody escape mutants of MV are neurovirulent, whereas others are non-virulent (Liebert et al., 1994). Here I determined with the help of recombinant MV the amino acids which are responsible for the binding of neutralizing monoclonal anti MV-H-antibodies (K29, K71, Nc32 and L77) or for neurovirulence of MV. The H-gene of the rodent brain adapted strain CAM/RB which was described for determining neurovirulence by Duprex et al. (1999) was introduced into the non-neurovirulent backbone of Edtag, which is the molecular clone of the vaccine strain Edm. The respective mutations were introduced by site directed mutagenesis. In FACS-analysis I could determine the amino acid changes which are responsible for the binding of the anti H-antibodies. In a structural model for MV-H (Langedijk et al., 1997) this amino acids reside in the membrane distal part of the molecule - the so called propeller. The following amino acid changes in the hemagglutinin protein are responsible for the antibody escape: L77 – 377 Arg -> Gln und 378 Met -> Lys; Nc32 – 388 Gly -> Ser; K71 – 492 Glu -> Lys und 550 Ser -> Pro; K29 – 535 Glu -> Gly. In addition I found that the combined amino acid changes at positions 195 and 200 are responsible for neurovirulence but are not associated with the antibody escape. The amino acid change at position 200 leads to the loss of a used glycosylation site in neurovirulent strains. The mutation at position 200 is not alone responsible for the neurovirulence but requires the second associated mutation at position 195, which deletes an additional positive charge in the H-protein. These two mutations which are responsible for the neurovirulence reside in the stem2 region of the structural model according to Langedijk. If in the H-protein the amino acids at position 195 and 200 are Gly and Ser, the virus multiplication and spread is enhanced in the brain of newborn Lewis-rats and causes an acute encephalitis with expression of typical proinflammatory cytokines. If at position 195 and 200 the amino acids Arg and Asn are present, the infection stays inapparent. I could also establish a cell culture system of mixed primary rat brain cells, which reflects the difference in the viral spread in vivo and which may be to used further to investigate the mechanisms responsible for neurovirulence. Results obtained with CD46 transgenic Lewis-rats showed that the presence of the MV receptor CD46 does not influence the virulence of the tested strains. Neither the vaccine strain nor a wildtype strain not adapted to rodents could induce acute encephalitis after intracerebral injection. These findings suggest that the neurovirulence of the rodent-brain adapted MV-strain CAM/RB depends essentially on amino acids Gly and Ser at positions 195 and 200 in the H-protein, and cannot be mediated by the transgenic expression of cellular receptors for MV.
28

Essential features of a PrfA-dependent : promoter of Listeria monocytogenes / Die essentiellen Eigenschaften eines PrfA-abhängigen Promotors von Listeria monocytogenes

Luo, Qin January 2004 (has links) (PDF)
The gram-positive, facultative intracellular pathogen Listeria monocytogenes is the causal agent of listeriosis. Most of well-known virulence genes are controlled by PrfA that belongs to the Crp-Fnr family of transcriptional activators. A PrfA-mediated transcription initiating at a virulence gene promoter, inlC promoter (PinlC) that regulates the expression of the small, secreted internalin C, was in-depth characterized by an in vitro transcription system to unravel the essential features of a PrfA-dependent promoter in this study. The obtained results indicate a dual promoter for inlC that leads to PrfA-dependent and -independent transcription in vitro and in vivo. The PrfA-dependent transcription requires, as expected, the PrfA-box, a conserved 14 bp sequence of dyad symmetry located about 40 bp upstream of the transcriptional start site of each PrfA-regulated gene. Another important structural feature for this PrfA-dependent promoter is the distance between the 3´-end of the PrfA-box and the 5´-end of the SigA-recognized –10 box fixed to 22 or 23 bp, which is observed in the interspace regions of the other known PrfA-dependent promoters, e.g. PactA, PplcA, Phly and Pmpl. The –35 box of PinlC is not necessary for PrfA-dependent transcription. The –10 box of PinlC and also that of the other PrfA-dependent promoters of L. monocytogenes closely resemble SigA-recognized –10 promoter sequences of the well-characterized gram-positive bacterium B. subtilis. Even the extended –10 motif (5´-TRTG-3´) considered to be a basic element for many SigA-recognized promoters in B. subtilis is present in PinlC. Primer extension studies reveal that both the PrfA-dependent and the independent promoter share the same –10 box. The PrfA-independent transcription of inlC depends on a –35 box located directly downstream of the PrfA-box, and the close proximity of the two sites inhibits strongly the transcription activity of the PrfA-independent promoter when the PrfA-RNA polymerase complex binds to the PrfA-box. Deletion of the PrfA-box results in PrfA-independent transcription from PinlC, which is no longer inhibited by PrfA. High concentration of GTP appears to be necessary for PrfA-dependent transcription initiated at the inlC promoter and at other PrfA-dependent promoters. Based on transcriptome analysis, Milohanic and his co-workers identified three groups of genes that were regulated differently by PrfA. Some of these genes containing putative PrfA-boxes in their 5´-upstream regulatory regions were selected for analysis of their transcriptional dependency on PrfA using again the in vitro transcription system. The data show that among these “PrfA-regulated” promoters tested, only the promoter of the hpt gene belonging to group I is clearly activated by PrfA. This promoter is also the only one that exhibited all essential features of a typical PrfA-dependent promoter as described above. In vitro transcription starting at most of the other promoters was neither positively nor negatively affected by PrfA. Transcription initiated at some of the promoters of group III genes (lmo0596 and lmo2067) is rather inefficient with SigA-loaded RNA polymerase, but is highly activated with RNA polymerase loaded with purified SigB. Addition of purified PrfA protein has no effect on the SigB-dependent transcription. These in vitro transcription results indicate that the in vivo observed PrfA effect on the expression of most of the new genes is either indirect or PrfA-mediated transcription of these genes requires - in contrast to the PrfA-dependent transcription of the known virulence genes (including hpt) - additional factors not present in the in vitro transcription assay. In addition to these new genes described by Milohanic, the promoters of two genes (lmo2420 and lmo2840) that contain putative PrfA-boxes with only a single mismatch in their upstream regulatory regions were analyzed in this study. However, transcription of none of these genes is regulated by PrfA, suggesting that these genes are either not truly regulated by PrfA or regulated by other global transcription activators that interact with PrfA by yet unknown mechanisms. By exchanging corresponding sequences between a functionally inactive promoter ParoAP2 and a typical PrfA-dependent promoter PplcA, it is found that PrfA-dependent in vitro transcription can be initiated from the hybrid promoter containing the putative PrfA-box and the SigA-recognized –10 box (TTTAAT) from the putative PrfA-dependent aroAP2 promoter, but it is inhibited strongly by the interspace sequence between these two sites apparently due to an additional RNA polymerase binding site [the –10 box (TAATAT) for the PrfA-independent transcription of ParoAP1)] within this region. Furthermore, a symmetric sequence downstream of the –10 box (TTTAAT) is also shown to be a strongly inhibitory for PrfA-dependent transcription from the putative PrfA-dependent aroAP2 promoter. / Listeria monocytogenes, ein gram-positives, fakultativ intrazelluläres Bakterium. Die meisten bekannten listeriellen Virulenzgene werden durch den positiven Regulationsfaktor PrfA, der zur Crp-Fnr-Familie von Transkriptionsfaktoren zählt, reguliert. Zu den durch PrfA regulierten Genen zählt auch inlC, das das kleine sekretierte Internalin C kodiert. Mit Hilfe des in vitro Transkriptionssystems wurde in dieser Arbeit die PrfA-abhängige Transkription des inlC-Promotors (PinlC) untersucht, um die essentiellen Eigenschaften eines PrfA-abhängigen Promotors zu charakterisieren. Die hier erhaltenen Ergebnisse deuten auf einen dualen Promotor für inlC hin, der für eine PrfA-abhängige und -unabhängige Transkription in vitro und in vivo verantwortlich ist. Ein weiteres wichtiges Merkmal für diesen PrfA-abhängigen Promotor ist der Abstand zwischen dem 3'-Ende der PrfA-Box und dem 5'-Ende der SigA-abhängigen –10 Box, der 22 oder 23 bp beträgt und auch bei anderen bekannten PrfA-abhängigen Promotoren wie PactA, PplcA, Phly und Pmpl zu finden ist. Untersuchungen zeigten, dass die –35 Box von PinlC nicht notwendig für eine PrfA-abhängige Transkription ist. Die –10 Box von PinlC und anderen PrfA-abhängigen Promotoren von L. monocytogenes ähnelt stark den SigA-abhängigen –10 Promotorsequenzen des gut untersuchten gram-positiven Bakteriums B. subtilis. Sogar das erweiterte –10 Motiv (5'-TRTG-3'), das in B. subtilis als Hauptbestandteil vieler SigA-abhängiger Promotoren betrachtet wird, ist auch in PinlC zu finden. Untersuchungen mit Primer Extension zeigten, dass der PrfA-abhängige und PrfA-unabhängige inlC-Promotor die gleiche –10 Box verwenden. Die PrfA-unabhängige Transkription von inlC ist abhängig von einer –35 Box, die direkt downstream der PrfA-Box liegt. Durch die enge Nachbarschaft dieser beiden Sequenzen wird die Transkriptionsaktivität des PrfA-unabhängigen Promotors stark inhibiert, wenn der PrfA-RNA-Polymerase-Komplex an die PrfA-Box bindet. Deletion der PrfA-Box führt zu einer PrfA-unabhängigen Transkription von PinlC, die nicht länger durch PrfA inhibiert wird. Hohe Konzentration an GTP scheint zudem für die PrfA-abhängige Transkripitonsinitiation am inlC-Promotor und anderen PrfA-abhängigen Promotoren notwendig zu sein. Basierend auf Transkriptomanalysen identifizierte Milohanic et al. drei Gruppen von Genen, die differentiell durch PrfA reguliert werden. Einige dieser Gene besitzen putative PrfA-Boxen in ihren Promotorbereichen und wurden in dieser Arbeit mit Hilfe des in vitro Transkriptionssystems auf ihre PrfA-Abhängigkeit untersucht. Die hier erhaltenen Ergebnisse zeigen, dass unter allen untersuchten "PrfA-regulierten" Promotoren nur der Promotor des hpt-Gens - einem Mitglied der Gruppe I - deutlich durch PrfA aktiviert wird. Die meiste andere Promotoren wurde weder positiv noch negativ durch PrfA beeinflusst. Die Transkription von einigen Promotoren der Gruppe III Gene (lmo0596 und lmo2067) ist relativ ineffizient mit SigA-beladener RNA-Polymerase, wird aber stark aktiviert, wenn RNA-Polymerase mit gereinigtem SigB beladen wird. Zugabe von gereinigtem PrfA-Protein hat keinen Einfluss auf die SigB-abhängige Transkription. Diese in vitro-Transkriptionsergebnisse deuten darauf hin, dass der in vivo beobachtete PrfA-Effekt auf die Expression der meisten neu identifizierten Gene entweder indirekt ist oder die PrfA-vermittelte Transkription dieser Gene im Gegensatz zur PrfA-abhängigen Transkription der bekannten Virulenzgene (einschließlich hpt) zusätzliche Faktoren benötigt, die im in vitro Transkriptionsansatz nicht vorhanden sind. Neben diesen neuen von Milohanic et al. beschriebenen Genen wurden die Promotoren von zwei weiteren Genen (lmo2420 und lmo2840) untersucht, die putative PrfA-Boxen mit nur einem Mismatch aufwiesen. Die Transkription dieser beiden Gene zeigte jedoch keine Abhängigkeit von PrfA. Durch Austausch entsprechender Sequenzen zwischen einem funktionell inaktiven Promotor ParoAP2 und einem typischen PrfA-abhängigen Promotor PplcA konnte gezeigt werden, dass PrfA-abhängige in vitro Transkription von einem Hybridpromotor initiiert werden kann, der die putative PrfA-Box und SigA-abhängige –10 Box (TTTAAT) des möglicherweise PrfA-abhängigen aroAP2-Promotors besitzt. In vitro Transkription wird allerdings durch die zwischen PrfA und –10 Box liegende Sequenz des aroAP2-Promotors stark inhibiert, da offensichtlich eine zusätzliche RNA-Polymerase-Bindungsstelle [die –10 Box (TAATAT) für die PrfA-unabhängige Transkription von ParoAP1] in dieser Region vorliegt. Außerdem konnte gezeigt werden, dass eine symmetrische Sequenz downstream der –10 Box (TTTAAT) die PrfA-abhängige Transkription vom aroAP2-Promotor stark inhibiert.
29

Funktionelle Analysen virulenzrelevanter und essentieller Gene in Candida albicans / Functional analysis of virulence related and essential genes in Candida albicans

Bader, Teresa Anna January 2005 (has links) (PDF)
Die Bedeutung von Mykosen hat wegen der wachsenden Zahl immunsupprimierter Patienten in den letzten Jahren immer mehr zugenommen. Diese erkranken häufig an oberflächlichen sowie lebensbedrohlichen systemischen Infektionen mit dem opportunistisch humanpathogenen Hefepilz Candida albicans, da der Keim, der oftmals als harmloser Kommensale auf den Schleimhäuten im Gastrointestinaltrakt gesunder Menschen vorkommt, vom geschwächten Immunsystem nicht mehr in Schach gehalten werden kann. In dieser Arbeit sollten bestimmte Gene von C. albicans, die in anderen Organismen als essentiell für deren Lebensfähigkeit bzw. Virulenz beschrieben wurden, als potentielle Zielstrukturen für die Entwicklung neuer Antimykotika charakterisiert werden. Das CMP1-Gen kodiert für die katalytische Untereinheit der konservierten Calcium/Calmodulin-abhängigen Phosphatase Calcineurin, die in der Bäckerhefe Saccharomyces cerevisiae und in anderen Organismen verschiedene physiologische Prozesse reguliert und essentiell für die Virulenz des pathogenen Hefepilzes Cryptococcus neoformans ist. Um die Bedeutung von Calcineurin für das Überleben und die Virulenz von C. albicans zu untersuchen, wurden homozygote cmp1 knock-out-Mutanten sowohl in einem auxotrophen C. albicans-Laborstamm als auch, mit Hilfe eines neuen dominanten Selektionsmarkers, in einem prototrophen Wildstamm hergestellt. Die Mutanten erwiesen sich als hypersensitiv gegenüber Natrium, Calcium, Mangan und Lithium sowie gegenüber alkalischem pH-Wert. Darüber hinaus konnten die mutierten Zellen Membranstreß, der durch SDS- oder Fluconazol-Zugabe verursacht wurde, nicht tolerieren und waren unter diesen Bedingungen stark in ihrem Wachstum gehemmt. Andere wichtige Virulenzeigenschaften wie die Toleranz gegenüber Wirts-Körpertemperatur und die Fähigkeit zur Hyphenbildung zeigten sich durch die CMP1-Deletion in vitro nicht beeinträchtigt. Dennoch machte die Anwendung eines murinen Modells einer systemischen Candidose in vivo deutlich, daß die Mutanten sehr stark in ihrer Virulenz attenuiert waren. Der Virulenzdefekt war vermutlich zumindest zum Teil dadurch bedingt, daß die Calcineurin-defizienten Zellen im Gegensatz zum Wildtyp in humanem Serum nicht wachsen konnten und deshalb möglicherweise schlechter über die Blutbahn disseminieren konnten. Außer Calcineurin wurden in Kooperation mit einem Industriepartner drei weitere Gene, YML127, YPR143, und YML93, die in S. cerevisiae als essentiell beschrieben wurden und die keine signifikanten Homologien zu Vertebraten-Genen aufwiesen, in der C. albicans-Genomsequenz identifiziert und auf ihre Eignung als potentielle Targets hin untersucht. Die Funktion dieser Gene war zu Beginn dieser Arbeit unbekannt; vor kurzem wurde jedoch gezeigt, daß sie in S. cerevisiae eine Rolle beim Chromatin-Remodeling bzw. bei der rRNA-Prozessierung haben. Nachdem sich alle Gene auch in C. albicans als essentiell herausgestellt hatten, wurden konditional letale Mutanten hergestellt, in denen die Gene durch induzierbare Deletion mit Hilfe der site-spezifischen Rekombinase FLP aus dem Genom entfernt wurden. Dadurch wurde eine Population von Nullmutanten erhalten, in denen der terminale Phänotyp der Gendeletion analysiert werden konnte. Die funktionelle Analyse des YML127 (RSC9) Gens wies darauf hin, daß es in C. albicans eine ähnliche Funktion hat wie in der Bäckerhefe, in der das Rsc9-Protein ein Bestandteil des RSC-Protein-Komplexes ist, der die Struktur des Chromatins in Abhängigkeit von Zellzyklus und Umweltbedingungen umorganisiert und damit die Aktivität von Genen steuert. Mit Hilfe eines HA-Epitop markierten YML127-Gens konnte das Genprodukt im Zellkern von C. albicans lokalisiert werden. Die C. albicans yml127-Nullmutanten produzierten verlängerte, mehrfach knospende Zellen, was einen Verlust der Koordination zwischen Mitose und Zytokinese vermuten ließ. Die beiden Gene YPR143 und YML93 (UTP14) scheinen wie ihre homologen Vertreter in S. cerevisiae an der Prozessierung der ribosomalen RNA beteiligt zu sein. Heterozygote Mutanten wiesen eine Haploinsuffizienz auf, die sich in einer erhöhten Suszeptibilität gegenüber Hemmstoffen der rRNA-Synthese und der Ribosomenaktivität zeigte, und in den induzierten Nullmutanten akkumulierten Vorstufen der reifen rRNAs. In beiden Fällen führte die Gendeletion zu Anomalien im Zellzyklus; die ypr143-Mutanten wiesen eine vergrößerte unförmige Zellmorphologie auf, und die yml93-Mutanten bildeten große, rundliche Zellen. Die Ergebnisse dieser Arbeit erlauben nicht nur wichtige Einblicke in die Funktion der untersuchten Gene in essentiellen zellulären Prozessen, sondern zeigen auch deren Bedeutung für die Virulenz bzw. für das Überleben des humanpathogenen Hefepilzes C. albicans. Die entsprechenden Genprodukte sollten sich deshalb prinzipiell als Angriffspunkte für die Entwicklung neuer antimykotischer Medikamente eignen. / The importance of fungal infections has steadily increased during the past decades due to the growing number of immunocompromised patients. These patients often suffer from superficial as well as life-threatening systemic infections with the opportunistic human pathogenic yeast Candida albicans, which is a harmless commensal on mucosal surfaces in many healthy people but cannot be controlled any more by a weakened immune system. On the other hand, virulence traits of the fungus also contribute to its pathogenicity, because they enable adaptation to different host niches. The success of medical treatment is limited by the emergence of resistance and by toxic side effects of antifungal drugs. Therefore, there is an urgent need to develop novel antimycotic agents. In this work selected C. albicans genes, which were known to be essential for viability or virulence in other organisms, were characterized as potential targets for the development of new antifungal drugs. The CMP1 gene encodes the catalytic subunit of the conserved calcium/calmodulin-dependent phosphatase calcineurin, which regulates a variety of physiological processes in the model yeast Saccharomyces cerevisiae and other organisms and is essential for virulence of the pathogenic yeast Cryptococcus neoformans. To investigate the importance of calcineurin for survival and virulence of C. albicans, homozygous cmp1 knock-out mutants were constructed in an auxotrophic C. albicans laboratory strain as well as, using a new dominant selection marker, in a prototrophic wild-type strain. The mutants showed hypersensitivity to increased concentrations of ions and to alkaline pH. In addition, the mutated cells could not tolerate membrane stress resulting from SDS or fluconazole treatment and their growth was strongly inhibited under these conditions. Other characteristics that are important for virulence, like tolerance to the host body temperature and the ability to switch to a hyphal growth form, were not affected by the CMP1 deletion. Nevertheless, the mutants were avirulent in a murine model of systemic candidiasis. The virulence defect could be explained at least in part by the fact that, in contrast to the wild-type, the cmp1 mutants were unable to grow in human serum and therefore might have a reduced capacity to disseminate via the bloodstream. In addition to CMP1, three other genes, YML127, YPR143, and YML93, were selected in cooperation with an industrial partner from the available C. albicans genome sequence and evaluated as potential targets. These genes had been reported to be essential in S. cervisiae and they did not exhibit significant homology to mammalian genes. At the beginning of the present work the function of the three genes was unknown, but recently it was demonstrated that their counterparts in S. cerevisiae have roles in chromatin remodeling or rRNA processing. It was demonstrated that all three genes are also essential in C. albicans. Therefore, conditional lethal mutants were constructed in which the genes could be excised from the genome by inducible deletion using the site-specific FLP recombinase. In this way, populations of null mutants were obtained in which the terminal phenotype of the gene deletion could be analyzed. The functional analysis of the YML127 (RSC9) gene showed that it has a similar function in C. albicans as in S. cerevisiae, where the Rsc9 protein is a component of the RSC complex that remodels the structure of chromatin in a cell cycle dependent manner and in response to environmental conditions and thereby controls gene activity. Using an HA-epitope-tagged YML127 gene the Yml127 protein could be localized in the nucleus in C. albicans. The C. albicans yml127 null mutants produced elongated, multi-budded cells, pointing to a loss of coordination of mitosis and cytokinesis. The genes YPR143 and YML93 (UTP15) seem to be involved in the processing of the ribosomal RNA, like their counterparts in S. cerevisiae. Heterozygous mutants exhibited a haploinsufficient phenotype, which was evident from their hypersusceptibility to inhibitors of rRNA synthesis and ribosome activity, and the induced null mutants accumulated precursors of the mature rRNAs. In both cases the gene deletion resulted in cell cycle defects; the ypr143 null mutants produced enlarged, misshapen cells, and the yml93 mutants formed large, round cells. The results of this work not only provide valuable clues about the function of the investigated genes in essential cellular processes, but also demonstrate their importance for virulence and viability of the human pathogenic fungus C. albicans. In principle, the corresponding gene products should therefore be suitable targets for the development of novel antifungal drugs.
30

Bedeutung der Lipopolysaccharidstrukturen bei pathogenen Vibrio cholerae Stämmen für die Ausbildung von Cholera und Abgrenzung zu Umweltisolaten / Importance of LPS structures of virulent Vibrio cholerae strains in correlation with cholera disease and discrimination from environmental strains

Schild, Stefan January 2005 (has links) (PDF)
Obwohl inzwischen über 200 verschiedene Serogruppen von V. cholerae bekannt sind, wurden Ausbrüche der Cholera hauptsächlich von Stämmen der unbekapselten Serogruppe O1 und der bekapselten Serogruppe O139 verursacht. Die Komponenten des Lipopolysaccharids (LPS) von O1 und O139, sowie die Kapsel von O139 tragen zur Kolonisierung im Gastrointestinaltrakt bei. Um die Funktion des LPS und der Kapsel als Virulenzfaktor näher zu untersuchen, wurden Adhäsionsstudien mit definierten LPS- und/ oder Kapsel-Mutanten beider pathogener Serogruppen durchgeführt. Dazu wurde die Mukus-produzierende humane Darmzelllinie HT-29-Rev MTX verwendet. Im Vergleich zum jeweiligen Wildtyp (Wt) konnte für eine O Antigen-Mutante von O1 eine Reduktion um 85%, für eine O Antigen/ Kapsel-Mutante von O139 eine Reduktion um 70% in der Adhäsionsrate festgestellt werden. Ein Beitrag von ToxR regulierten Genprodukten ist ebenfalls möglich. Weiterhin wurden mit WavJ und WavD zwei Genprodukte der Kernoligosaccharid -Biosynthese charakterisiert, welche bislang nur in dem wa*-Genclustertyp 1 der klinischen Isolate nachgewiesen worden sind. Es konnte gezeigt werden, dass beide Genprodukte an der Biosynthese des Kern OS beteiligt sind, wobei WavJ mit hoher Wahrscheinlichkeit die Heptosyl-IV-Transferase darstellt. Die wavDJ-Doppelmutanten beider Serogruppen wiesen eine erhöhte Sensitivität gegenüber Novobiocin auf. Dagegen konnte eine Attenuation der Mutanten im Mausmodell nur für die Serogruppe O139 demonstriert werden. Ein Schlüsselenzym der LPS-Biosynthese stellt die Oberflächenpolymer:Lipid A-Kern OS-Ligase (WaaL), kurz O Antigen-Ligase genannt, dar. In dieser Arbeit wurden die in der Primärstruktur stark unterschiedlichen Ligasen aus einem pathogenen (P27459) und apathogenen (V194) V. cholerae Isolat strukturell und funktionell analysiert. Es wurde gezeigt, dass die Aktivität beider Ligasen von der Anwesenheit eines N-Acetylglucosamins (GlcNAc) im Kernoligosaccharid abhängig ist. Dieser Zucker wird durch das Genprodukt WavL transferiert, welchem in dieser Arbeit die Aktivität einer N-Acetylglucosaminyltransferase zugeordnet werden konnte. Das Gen wavL wurde in allen zur Verfügung stehenden V. cholerae Isolaten nachgewiesen und stellt wahrscheinlich eine generelle Voraussetzung des Kern OS für eine O Antigen-Anheftung dar. Im Gegensatz dazu, diskriminiert die An- bzw. Abwesenheit einer Galaktose (Gal) im Kern OS die Spezifität der Ligasen von V. cholerae P27459 bzw. V194. Dabei ist die Aktivität der Galaktosyltransferase WavM, essentiell für die Aktivität der Gal-abhängigen Ligase von V194. Die Gal-unabhängige Ligase von P27459 wird hingegen durch die Anwesenheit von Gal im Kern OS inhibiert. Hybridfusionen der beiden Ligasen deuten an, dass die Erkennungsdomäne für Gal in der C-terminalen Hälfte lokalisiert ist. Erstmals wurde die Topologie einer Ligase durch PhoA- und LacZ-Fusionen analysiert. Die Suche nach konservierten Aminosäuren (AS) in verschiedenen Ligasen führte zur Identifizierung der Motive R(X3)L und H(X10)G in zwei periplasmatischen Schleife. Ein Austausch des R oder des H in diesen Motiven führte zum Verlust der Ligase-Aktiviät von WaaL aus V. cholerae und S. enterica. Damit geben diese Motive einen ersten Hinweis auf das aktive Zentrum des Enzyms. Desweiteren wurde nach möglichen O Antigen-Transportern bei V. cholerae gesucht, welche bislang noch nicht identifiziert worden waren. Über die Anpassungen von V. cholerae an aquatische Ökosysteme, insbesondere hinsichtlich der wechselnden Osmolarität, ist nahezu nichts bekannt. Durch ein in dieser Arbeit konstruiertes und etabliertes Transposonsystem konnten 3600 Mutanten erzeugt und auf Wachstumsdefekte unter hypertonischen Bedingungen untersucht werden. Eine dieser osmosensitiven Mutanten wies eine Insertion in dem Locus VCA0565 auf, welcher für eine putative Sensor-Histidinkinase kodiert. Mit dem Regulator, kodiert durch VCA0566, stellt VCA0565 das putative Zwei-Komponentensystem OsmRK dar. Transkriptomanalysen von osmR/ K-Mutanten lieferten keine Erklärung des Wachstumsdefekts unter hypertonischen Bedingungen, zeigten aber eine Vernetzung der durch OsmR/ K regulierten Gene mit dem ToxR-Regulon auf. Analysen der Außenmembran demonstrierten, dass eine Mutation von osmR/ K zu einer Repression von OmpU unter hohen Salzkonzentrationen führt. Vergleichende Experimente mit weiteren Mutanten deuteten an, dass es in osmR/ K- und toxS-Mutanten unter erhöhten Salzkonzentrationen zur Degradation von ToxR kommt. Während die Deregulation von OmpU in osmR/ K-Mutanten nur unter Salzstress zu beobachten war, führte in der toxS-Mutante auch ein Membranstress durch Zugabe von Protamin zu einer Repression von OmpU. Die zu OsmR/ K nah verwandten putativen Zwei-Komponentensysteme EnvZ/ OmpR und VCA0257/ VCA0256 hatten unter keiner der getesteten Bedingungen einen Einfluss auf die Proteine der AM. Weiterhin wurde eine C-terminale Degradation von HutA unter hypertonischen Bedingungen aufgedeckt. / Although, more than 200 serogroups of V. cholerae.were identified, however, only the strains of the non-encapsulated O1 and the encapsulated O139 serogroups were found to be responsible for cholera epidemics. The components of the LPS of O1 and O139 play a crucial role in the colonization of the gastrointestinal tract. To analyze the contribution of the LPS and the capsule in the adhesion to epithelial cells, mucus layer attachment studies using defined O antigen and/ or capsule mutants of both serogroups and the human intestinal cell line HT29-Rev MTX were performed. In case of the O antigen mutant of O1 a 85% and for the O antigen and capsule mutant of O139 a 70% reduction in the adhesion rate was determined compared to wild type. It is likely that ToxR regulated gene products also contribute to the adhesion, since a toxR-mutant of O1 showed a 3-fold reduction in the adhesion rate. In addition the two gene products of the core oligosaccharide biosynthesis, WavJ and WavD, were characterized. So far the corresponding genes could only be found in the wa*-gene cluster type 1 of clinical isolates. It could be demonstrated, that single and double knockout mutants have an effect on core oligosaccharide biosynthesis in both serogroups. Based on bioinformatical data it is likely that WavJ represents the heptosyl-IV-transferase. Double mutants in wavJ and wavD of both serogroups showed an attenuated growth in the presence of novobiocin, whereas only the mutants in O139 demonstrated reduced colonization in the in vivo mouse model. The surface polymer:lipid A-core ligase (WaaL), also called the O antigen ligase, is a key enzyme in the LPS biosynthesis of Gram- bacteria. Part of this work focused on the structural and functional characteristics associated with the recognition of the core oligosaccharide of two distantly related ligases of a virulent (P27459) and an environmental (V194) V. cholerae isolate. It was demonstrated that the activity of both ligases is dependent on the presence of N-acetylglucosamine, which is attached to the core oligosaccharide by the WavL glycosyltransferase. The gene wavL could be found in all V. cholerae isolates so far. In contrast, an additional sugar substitution, i.e. galactose, which is transfered by the WavM galactosyltransferase, discriminates the core oligosaccharide specificity of the ligases of P27459 and V194. The activity of WavM is essential for the activity of the galactose-dependent ligase of V194, whereas it hinders the galactose-independent ligase of P27459 to transfer the O antigen onto the core oligosaccharide. WaaL protein hybrids between galactose dependent and non-dependent ligases indicate that the galactose recognition site is located in the C-terminal half. Using PhoA and LacZ fusions the topology of the ligase of P27459 was determined. Amino acid sequence alignments of WaaL proteins identified the distinct conserved motifs R(X3)L and H(X10)G in two periplasmic loops. By site directed mutagenesis of the histidine and arginine residues within these motifs, an abortism of O antigen transfer reaction for WaaLs of V. cholerae and Salmonella enterica was found. Furthermore the putative O antigen-transport systems of V. cholerae were investigated. In this work a new transposon system was constructed and established, resulting in 3600 mutants, which were screened for growth defects under hypertonic conditions. One of these mutants had an insertion in locus VCA0565, which encodes a putative sensor histidine kinase. In combination with the transcriptional regulator, encoded by VCA0566, they represent the putative two-component system OsmRK. Comparing the transcriptom of osmR/ K-mutants to the wild type revealed no explanation for the osmosensitive phenotype, but showed some interaction between the regulon of OsmR/ K and ToxR. Analysis of the outer membrane demonstrated, that a mutation in osmR/ K results in a repression of OmpU under hypertonic conditions. Comparative experiments, including additional mutants indicated a degradation of ToxR in osmR/ K- and toxS-mutants in presence of high salt concentrations. In contrast to osmR/ K-mutants, in the toxS-mutant the repression of OmpU could be also observed by a different membrane stress caused by protamine. In addition, the analysis of the outer membrane proteins revealed a C-terminal degradation of HutA under hypertonic stress conditions.

Page generated in 0.0626 seconds