• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of ATP-dependent RNA Helicase DDX3X on Herpes Simplex Type 1 (HSV-1) Replication

Khadivjam, Bita 08 1900 (has links)
Le criblage par siRNA de 49 protéines de l'hôte qui sont incorporées dans les particules matures du virus herpès simplex de type 1 (VHS-1) a révélé l'importance d'au moins 15 d’entre elle pour infectivité du virus (Stegen, C et al. 2013). Parmi celle-ci figure la protéine humaine DDX3X, qui est une ARN hélicase ATP-dépendante. Cette protéine multifonctionnelle participe à différents stages de l'expression génique, tels que la transcription, la maturation et le transport d'ARNm ainsi que la traduction. DDX3X est impliquée dans la réplication de plusieurs virus tels que le Virus de l’immunodéficience humaine de type 1 (VIH-1), l'hépatite B (VHB), le virus de la vaccine (VACV) et le virus de l'hépatite C (VHC). Le rôle exact de DDX3X dans le cycle de réplication du VHS-1 est toutefois inconnu. Ce mémoire consiste en l’étude détaillée de l'interaction de DDX3X avec le virus. De manière surprenante, tant l’inhibition que la surexpression de DDX3X réduit de manière significative l'infectivité du VHS-1. Fait intéressant, lorsque nous avons restauré la déplétion de DDX3X par une construction résistante aux ARNi utilisés, le virus pouvait de nouveau infecter les cellules efficacement, indiquant que le virus est sensible aux quantités de cette protéine de son hôte. Nos résultats indiquent de plus que le virus modifie la localisation de DDX3X et cause son agrégation tôt dès les premiers temps de l'infection. Cependant, le virus ne modifie pas les niveaux cellulaires de DDX3X dans deux des trois lignées cellulaires examinées. Nous avons également pu établir que cette protéine n'a pas d'effet sur l'entrée du VHS-1, suggérant qu’elle agit à un stade ultérieure de l’infection. En examinant cette relation plus en détail, nos résultats ont démontré que l’inhibition ou la surexpression de DDX3X inhibent toutes deux la production de nouvelles particules virales en réduisant l'expression des diverses classes cinétiques des protéines virales et ce au niveau de leur transcription. Malgré le rôle connu DDX3X dans la stimulation de la réponse immunitaire innée et la production d’interférons de type I, l’impact de DDX3X sur la réplication du VHS-1 est ici indépendante de cette fonction. Ces travaux démontrent donc une nouvelle voie d’action de DDX3X sur les virus en agissant directement sur la transcription de gènes viraux et la réplication du génome d’un virus à ADN. En comprenant mieux cette interactions hôtepathogène, il est maintenant envisageable de concevoir des nouvelles approches thérapeutiques contre ce virus. / siRNA screening of 49 host proteins that are known to be incorporated in the mature virions of herpes simplex virus type 1 (HSV-1) revealed the importance of at least 15 cellular proteins for viral infectivity (Stegen, C et al. 2013). Among these, was the human protein DDX3X, a DEAD-box ATP-dependent RNA helicase. This multifunctional protein participates in different stages of gene expression such as mRNA transcription, maturation, mRNA export and translation. DDX3X has been shown to be involved in the replication of several viruses such as human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV) vaccinia virus (VACV) and hepatitis C virus (HCV). The exact role of DDX3X in HSV-1 replication cycle is not known. Here we sought to find the detailed interaction between DDX3X with HSV-1. Surprisingly, the down-regulation as well as overexpression of DDX3X, significantly reduced the infectivity of HSV-1, indicating that the virus is sensitive to the precise levels of DDX3X. Accordingly, when we rescued DDX3X back to its normal cellular levels by sequential transfection of DDX3X siRNA and siRNA resistant DDX3X plasmid, the virus was able to infect cells efficiently compare to wild-type conditions. Furthermore, the virus changes the localization of DDX3X and causes its aggregation at early times in the infection. However, the virus does not change the cellular levels of DDX3X in at least two of three different cell lines tested. Using a luciferase assay we were able to establish that this protein has no effect on the entry of HSV-1. In fact, depleting or overexpressing DDX3X impaired the production on newly assembled viral particles by blocking the expression of all classes of viral proteins at the transcription level. Despite the known role of DDX3X in the stimulation of innate immune response and interferon type I production, DDX3X appears to act on HSV-1 replication independently of this pathway. This highlights a novel route of action of DDX3X by acting at the transcription level and the consequent genome replication of a DNA virus. By better understanding such pathogen interactions, it might now be possible to design novel therapeutic approaches.
2

Contribution de la Glycoprotéine M dans la Sortie de HSV-1

Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which affects a large population worldwide. Herpes is generally considered a benign disease whose most common form is oral herpes (commonly called "cold sores"), but it can be very serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The virus can persist throughout life in the body of its host. So far, no treatment can eliminate the virus and no vaccine has proven effective in controlling herpes infections. HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and are known or believed to play different roles in different stages of the viral replication cycle, including attachment, entry, assembly, and viral propagation. Among these envelope glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus (PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear virions during infection. The objective of the project presented here was to clarify the relationship of the location and function of HSV-1 gM in the context of an infection. In the results reported here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In early phase of infection, gM is targeted to the nuclear membrane in a virus dependent manner. This occurs before the known reorganization of the TGN induced by the virus and before gM enters the secretory pathway. This active and specific nuclear targeting of gM seemingly does not depend on the functional interaction partners proposed in the literature. These data suggest that nuclear gM could have a new role independent of that in the final envelopment in the cytoplasm. In the second part of the work presented here, we focused iv our efforts on the role of gM in virus assembly in the late phase of infection and define an important functional domain within gM. Our results highlight the importance of the carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the intercellular spread of the virus. Hence, gM ER export was completely compromised in transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of these mutants by electron microscopy showed an accumulation of nucleocapsids without envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell type specific. Finally, screening of interaction partners of C-terminal domain of gM identified by the two-hybrid system allowed us to propose several interesting candidates that may regulate the function of gM in the virus morphogenesis and propagation.
3

Analyse des protéines du tégument par virométrie en flux et protéomique des capsides nucléaires du Virus Herpès Simplex de type 1 (VHS-1)

El Bilali, Nabil 04 1900 (has links)
No description available.
4

Rôle des modulateurs de la protéine kinase D dans la propagation du virus herpès simplex de type 1

Roussel, Élisabeth 06 1900 (has links)
No description available.
5

Contribution de la Glycoprotéine M dans la Sortie de HSV-1

Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which affects a large population worldwide. Herpes is generally considered a benign disease whose most common form is oral herpes (commonly called "cold sores"), but it can be very serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The virus can persist throughout life in the body of its host. So far, no treatment can eliminate the virus and no vaccine has proven effective in controlling herpes infections. HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and are known or believed to play different roles in different stages of the viral replication cycle, including attachment, entry, assembly, and viral propagation. Among these envelope glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus (PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear virions during infection. The objective of the project presented here was to clarify the relationship of the location and function of HSV-1 gM in the context of an infection. In the results reported here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In early phase of infection, gM is targeted to the nuclear membrane in a virus dependent manner. This occurs before the known reorganization of the TGN induced by the virus and before gM enters the secretory pathway. This active and specific nuclear targeting of gM seemingly does not depend on the functional interaction partners proposed in the literature. These data suggest that nuclear gM could have a new role independent of that in the final envelopment in the cytoplasm. In the second part of the work presented here, we focused iv our efforts on the role of gM in virus assembly in the late phase of infection and define an important functional domain within gM. Our results highlight the importance of the carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the intercellular spread of the virus. Hence, gM ER export was completely compromised in transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of these mutants by electron microscopy showed an accumulation of nucleocapsids without envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell type specific. Finally, screening of interaction partners of C-terminal domain of gM identified by the two-hybrid system allowed us to propose several interesting candidates that may regulate the function of gM in the virus morphogenesis and propagation.
6

L’étude de la glycoprotéine gM du virus Herpès simplex de type 1 (HSV-l) : identification de ses partenaires viraux et cellulaires et leur rôle dans la régulation de l’infection virale

El Kasmi, Imane 04 1900 (has links)
No description available.
7

Impact of viral and cellular factors on the nuclear egress of human herpes simplex virus Type-1 (HSV-1) capsids

Khadivjam, Bita 08 1900 (has links)
Le virus de l'herpès simplex de type 1 (VHS-1) est l'un des agents pathogènes humains les plus anciens et les plus efficaces. On estime que 3.7 milliards de personnes dans le monde vivent avec le VHS-1. Le virus persiste à l'état latent dans les neurones sensoriels, réapparaissant occasionnellement sous la forme d'une infection lytique qui endommage l'épithélium. Même si le VHS-1 provoque une maladie bénigne connue sous le nom de feu sauvage dans la majorité des cas, l'infection peut entraîner des conséquences catastrophiques telles que l'encéphalite et la kératite chez les personnes immunodéprimées les nouveau-nés. Compte tenu de la présence généralisée des infections à VHS-1, le virus représente une menace potentielle pour le système de santé. Le génome à ADN du VHS-1 est protégé par une cage protéique appelée capside. Bien que l'assemblage de la capside du VHS-1 et l'encapsidation du génome aient lieu à l'intérieur du noyau de l'hôte, les étapes finales de la maturation doivent être achevées dans le cytoplasme. Ainsi, pour la sortie du noyau, le virus a développé un mécanisme connu sous le nom d’enveloppement-déenveloppement-réenveloppement. La première étape de ce processus est principalement régulée par le complexe de sortie nucléaire (pUL31 et pUL34) et entraîne le bourgeonnement de la capside alors enveloppée dans l'espace périnucléaire. Par la suite, le déenveloppement de ces capsides périnucléaires et leur libération dans le cytoplasme seraient largement modulés par la kinase virale pUs3. Ce processus est sélectif, car les capsides remplies d'ADN (capsides C) sortent préférentiellement du noyau au détriment des intermédiaires viraux sans génome (capsides A et B). Cependant, nous ne savons pas pourquoi les capsides C sont favorisées lors de ce processus. En aval, le virus mûrit, recrute de nombreuses protéines puis acquiert une enveloppe à partir d'un compartiment cytoplasmique. Il sort ensuite de la cellule sous forme de virions enveloppés matures. Outre les facteurs viraux mentionnés et quelques protéines hôtes, l'implication de nombreuses autres protéines virales et cellulaires dans cette voie n'a pas été entièrement caractérisée. Pour élucider davantage ce processus de sélection de la capside C, nous avons profité de l'analyse MS/MS des capsides nucléaires du VHS-1 pour définir les facteurs hôtes et viraux spécifiques à chaque intermédiaire de capside nucléaire (Chapitre 2; Article 1). Nous avons trouvé deux protéines virales (pUL42 et pUL46) et sept facteurs de l'hôte (glycogène synthase, quatre protéines différentes liées à la kératine, fibronectine 1 et PCBP1) qui étaient spécifiques des capsides C matures. Fait intéressant, toutes ces protéines semblent posséder des fonctions qui ont le potentiel de médier la sortie nucléaire préférentielle des capsides C. Par conséquent, l'analyse fonctionnelle future de ces protéines pourrait nous fournir des informations inestimables sur la sortie nucléaire actuellement énigmatique des capsides du VHS-1. Les travaux en cours d'un collègue de laboratoire avec lequel je collabore impliquent PCBP1 en tant que modulateur de la sortie nucléaire (mémoire de Mackenzie Thornbury). Nous nous sommes ensuite concentrés sur un ensemble de données protéomiques déjà existantes des virions extracellulaires matures, qui a identifié jusqu'à 49 protéines hôtes incorporées dans le virus, y compris une hélicase à ARN humaine appelée DDX3X qui s'est avérée être un modulateur actif de la propagation virale (Chapitre 2; Article 2). Nous avons remarqué que cette protéine se déplace vers le noyau tard lors de l'infection, coïncidant avec la majeure partie de la sortie nucléaire virale. Par conséquent, nous avons émis l'hypothèse que DDX3X serait impliqué dans la sortie nucléaire virale. Nous avons découvert que, tardivement au cours de l'infection, pUL31 interagit avec DDX3X au niveau du noyau. Nous avons également constaté que DDX3X stimule de grandes agrégations de capsides virales matures dans la périphérie nucléaire. Fait intéressant, la redirection de DDX3X vers le bord nucléaire dépend de la présence de la machinerie de sortie nucléaire virale (pUL31, pUL34 et pUs3) et de capsides matures. Enfin, nos données ont montré qu'en l'absence de DDX3X, les capsides C s'accumulent entre les deux membranes nucléaires, probablement à la suite d'une incorporation inefficace de pUs3 au site de sortie. Ces résultats ont élucidé une nouvelle fonction de DDX3X et pourraient ouvrir de nouvelles voies passionnantes de recherche pour développement d’antiviraux en ciblant cette hélicase à ARN cellulaire. / Herpes simplex virus type 1 (HSV-1) is one of the oldest and most successful human pathogens. It is estimated that 3.7 billion people worldwide are living with HSV-1. The virus latently persists in sensory neurons, occasionally recurring as a lytic infection which damages the connected epithelium. Even though HSV-1 causes a mild disease known as the cold sore in majority of cases, the infection can have catastrophic consequences such as encephalitis and keratitis in immunocompromised individuals, newborns and, more rarely, in immune competent adults. Considering the widespread presence of HSV-1 infections, the virus poses a potential threat to the healthcare system. The DNA genome of HSV-1 is protected by a protein cage called a capsid. Although HSV-1 capsid assembly and genome packaging take place inside the host nucleus, the final steps of maturation must be completed inside the cytoplasm. Since the large diameter of these viral capsids (~125 nm) far exceeds the 30 nm cut-off of the nuclear pore complex, the virus has evolved a mechanism known as envelopment-deenvelopmentreenvelopment. The first step of this complex process is mainly regulated by the components of the nuclear egress complex (pUL31 and pUL34) and results in the budding of enveloped capsid into the perinuclear space. Subsequently, deenvelopment of these perinuclear capsids and their release into the cytoplasm is thought to be largely modulated by the viral kinase pUs3. This process is selective as DNA-filled capsids (C-capsids) preferentially exit the nucleus compared to genome-free viral intermediates (A- and Bcapsids). However, it is unclear how C-capsids are preferentially selected for the nuclear egress. Further downstream, the virus matures and recruit numerous proteins onto the viral capsids and acquire an envelope from a cytoplasmic compartment. It then exits the cell as mature enveloped virions. Apart from the mentioned viral factors and a handful of host proteins, implication of many other viral and cellular proteins in this pathway have not been fully characterized. To further resolve this process of C-capsid selection, we took advantage of MS/MS analysis of HSV-1 nuclear capsids to define host and viral factors specific to each nuclear capsid intermediate (Chapter 2; Article 1). We found two viral proteins (pUL42 and pUL46) and seven host factors (glycogen synthase, four different keratin-related proteins, fibronectin 1, and PCBP1) that were specific to mature C-capsids. Interestingly, all these proteins seem to possess functions that have the potential to mediate the preferential nuclear exit of C-capsids. Therefore, future functional analysis of these proteins might provide us with invaluable insights into the currently enigmatic nuclear egress of HSV-1 capsids. Ongoing work by a lab colleague with which I collaborate implicates PCBP1 as a modulator of nuclear egress (memoir of Mackenzie Thornbury). We then focused on an existing proteomics data set of mature extracellular virions, which revealed 49 virus-incorporated host proteins, including a human RNA helicase called DDX3X that we found to be an active modulator of viral propagation (Chapter 2; Article 2). We observed that DDX3X relocates to the nuclear rim late during infection, coinciding with the bulk of viral nuclear egress, and leading us to hypothesize that DDX3X is involved in the process. We discovered that, late during the infection, pUL31 interacts with DDX3X at the nuclear rim. We also found that DDX3X stimulates large aggregations of mature viral capsids in the nuclear periphery. Unexpectedly, redirection of DDX3X to the nuclear rim was dependent on the presence of the viral nuclear egress machinery (pUL31, pUL34 and pUs3) and mature capsids. Lastly, our data showed that in the absence of DDX3X, C-capsids accumulate in the perinuclear space, likely as the result of inefficient incorporation of pUs3 to the site of egress. These results have elucidated a novel function for DDX3X and may open new and exciting paths to produce antivirals by targeting this cellular RNA helicase.

Page generated in 0.1039 seconds