• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 14
  • 14
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Solução Numérica de escoamentos viscoelásticos tridimensionais com superfícies livres: fluidos de segunda ordem / Numerical solution of three-dimensional viscoelastic flows with free surfaces: second order fluids

Revoredo, Igor Feliciano Simplicio 26 March 2010 (has links)
Este trabalho apresenta uma técnica de diferenças finitas para resolver a equação constitutiva Fluido de Segunda Ordem para escoamentos tridimensionais com superfície livre. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada 3D. A superfície livre é modelada por células marcadoras (Marker-and-Cell) e as condições de contorno a superfície livre são empregadas. O método numérico apresentado neste trabalho foi validado pela comparação entre as soluções numéricas obtidas para o escoamento em um tubo com a solução analítica correspondente para Fluidos de Segunda Ordem. Ao fazer refinamento de malha, a convergência do método numérico foi verificada. Resultados numéricos da simulação do problema do inchamento do extrudado para números de Deborah De \'< OU =\' 0:3 são apresentados / This work presents a finite difference method to simulate three-dimensional viscoelastic flow with free surfaces governed by the constitutive equation Second Order Fluid. The governing equations are solved by the finite difference method in a three-dimensional shifted mesh. The free surface of fluid is modeled by the Marker-and-Cell method which allows for the visualization and the location of the free surface of fluid. The full free surface stress conditions are employed. The numerical method developed in this work is validated by comparing the numerical and analytic solutions for the steady state flow of a Second Order Fluid in a pipe. By using mesh refinement convergence results are given. Numerical results of the simulation of the transient extrudate swell of a Second Order Fluid of the Deborah number De \'< OR =\' 0:3 are presented
12

Solução Numérica de escoamentos viscoelásticos tridimensionais com superfícies livres: fluidos de segunda ordem / Numerical solution of three-dimensional viscoelastic flows with free surfaces: second order fluids

Igor Feliciano Simplicio Revoredo 26 March 2010 (has links)
Este trabalho apresenta uma técnica de diferenças finitas para resolver a equação constitutiva Fluido de Segunda Ordem para escoamentos tridimensionais com superfície livre. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada 3D. A superfície livre é modelada por células marcadoras (Marker-and-Cell) e as condições de contorno a superfície livre são empregadas. O método numérico apresentado neste trabalho foi validado pela comparação entre as soluções numéricas obtidas para o escoamento em um tubo com a solução analítica correspondente para Fluidos de Segunda Ordem. Ao fazer refinamento de malha, a convergência do método numérico foi verificada. Resultados numéricos da simulação do problema do inchamento do extrudado para números de Deborah De \'< OU =\' 0:3 são apresentados / This work presents a finite difference method to simulate three-dimensional viscoelastic flow with free surfaces governed by the constitutive equation Second Order Fluid. The governing equations are solved by the finite difference method in a three-dimensional shifted mesh. The free surface of fluid is modeled by the Marker-and-Cell method which allows for the visualization and the location of the free surface of fluid. The full free surface stress conditions are employed. The numerical method developed in this work is validated by comparing the numerical and analytic solutions for the steady state flow of a Second Order Fluid in a pipe. By using mesh refinement convergence results are given. Numerical results of the simulation of the transient extrudate swell of a Second Order Fluid of the Deborah number De \'< OR =\' 0:3 are presented
13

Dynamics of Thin Films near Singularities under the Influence of non-Newtonian Rheology

Vishrut Garg (5929685) 02 January 2019 (has links)
<div>Free surface flows where the shape of the interface separating two fluids is unknown <i>apriori</i> are an important area of interest in fluid dynamics. The study of free surface flows such as the breakup and coalescence of drops, and thinning and rupture of films lends itself to a diverse range of industrial applications, such as inkjet printing, crop spraying, foam and emulsion stability, and nanolithography, and helps develop an understanding of natural phenomena such as sea spray generation in oceans, or the dynamics of tear films in our eyes. In free surface flows, singularities are commonly observed in nite time, such as when the radius of a thread goes to zero upon pinchoff or when the thickness of a film becomes zero upon rupture. Dynamics in the vicinity of singularities usually lack a length scale and exhibit self-similarity. In such cases, universal scaling laws that govern the temporal behavior of measurable physical quantities such as the thickness of a lm can be determined from asymptotic analysis and veried by high-resolution experiments and numerical simulations. These scaling laws provide deep insight into the underlying physics, and help delineate the regions of parameter space in which certain forces are dominant, while others are negligible. While the majority of previous works on singularities in free-surface flows deal with Newtonian fluids, many fluids in daily use and industry exhibit non-Newtonian rheology, such as polymer-laden, emulsion, foam, and suspension flows.</div><div><br></div><div><div>The primary goal of this thesis is to investigate the thinning and rupture of thin films of non-Newtonian fluids exhibiting deformation-rate-thinning (power-law) rheology due to attractive intermolecular van der Waals forces. This is accomplished by means of intermediate asymptotic analysis and numerical simulations which utilize a robust Arbitrary Eulerian-Lagrangian (ALE) method that employs the Galerkin/Finite-Element Method for spatial discretization. For thinning of sheets of power-law fluids, a signicant finding is the discovery of a previously undiscovered scaling regime where capillary, viscous and van der Waals forces due to attraction between the surfaces of the sheet, are in balance. For thinning of supported thin films, the breakdown of the lubrication approximation used almost exclusively in the past to study such systems, is shown to occur for films of power-law fluids through theory and conrmed by two dimensional simulations. The universality of scaling laws determined for rupture of supported films is shown by studying the impact of a bubble immersed in a power-law fluid with a solid wall.</div></div><div><br></div><div><div>Emulsions, which are ne dispersions of drops of one liquid in another immiscible liquid, are commonly encountered in a variety of industries such as food, oil and gas, pharmaceuticals, and chemicals. Stability over a specied time frame is desirable in some applications, such as the shelf life of food products, while rapid separation into its constituent phases is required in others, such as when separating out brine from crude oil. The timescale over which coalescence of two drops of the dispersed phase occurs is crucial in determining emulsion stability. The drainage of a thin film of the outer liquid that forms between the two drops is often the rate limiting step in this process. In this thesis, numerical simulations are used to decode the role played by fluid inertia in causing drop rebound, and the subsequent increase in drainage times, when two drops immersed in a second liquid are brought together due to a compressional flow imposed on the outer liquid. Additionally, the influence of the presence of insoluble surfactants at the drop interface is studied. It is shown that insoluble surfactants cause a dramatic increase in drainage times by two means, by causing drop rebound for small surfactant concentrations, and by partially immobilizing the interface for large surfactant concentrations.</div></div>
14

A Numerical Study of Droplet Dynamics in Viscoelastic Flows

Arun, Dalal Swapnil January 2016 (has links) (PDF)
The polymers are integral part of vast number of products used in day to day life due to their anomalous viscoelastic behaviour. The remarkable flow behaviour exhibited by the polymeric fluids including rod climbing, extrudate swell, tube-less siphon, viscoelastic jet, elastic recoil and sharkskin instability is attributed to the complex microstructures in the polymeric liquids that arise due to the interactions of long chain polymer molecules with each other and with the surrounding fluid particles. The significance of polymer in transportation, packaging, pharmaceutical, chemical, biomedical, textiles, food and polymer processing industries highlights the requirement to comprehend the complex rheology of polymeric fluids. First, we investigate the flow features exhibited by different shear thinning vis-coelastic fluids in rectangular cavities over a wide range of depth to width ratio. We have developed a viscoelastic flow solver in order to perform numerical simulations of highly elastic flow of viscoelastic fluids. In particular, we discuss the simulations of flows of constant viscosity Boger and shear thinning viscoelastic fluids in the complex flow problems using different constitutive equations. The effects of elasticity and inertia on the flow behaviour of two shear thinning vis-coelastic fluids modeled using Giesekus and linear PTT constitutive equations in rectangular cavities is studied. The size of the primary eddies and critical aspect ratio over which the corner eddies merge to yield a second primary eddy in deep cavities is discussed. We demonstrate that the flow in the shallow and deep cavities can be characterized using Weissenberg number, defined based on the shear rate, and Deborah number, specified based on the convective time scale, respectively. The study of flow in driven cavities is important in understanding of the mixing process during synthesis of blends and composites. Next, we study two phase polymeric flow in confined geometries. Nowadays, polymer processing industries prefer to develop newer polymer with the desired material properties mechanically by mixing and blending of different polymer components instead of chemically synthesizing fresh polymer. The microstructure of blends and emulsions following drop deformation, breakup and coalescence during mixing determines its macroscopic interfacial rheology. We developed a two phase viscoelastic flow solver using volume conserving sharp interface volume-of-fluid (VOF) method for studying the dynamics of single droplet subjected to the complex flow fields. We investigated the effects of drop and matrix viscoelasticity on the motion and deformation of a droplet suspended in a fully developed channel flow. The flow behaviour exhibited by Newtonian-Newtonian, viscoelastic-Newtonian, Newtonian-viscoelastic and viscoelastic-viscoelastic drop-matrix systems is presented. The difference in the drop dynamics due to presence of constant viscosity Boger fluid and shear thinning viscoelastic fluid is represented using FENE-CR and linear PTT constitutive equations, respectively. The presence of shear thinning viscoelastic fluid either in the drop or the matrix phase suppresses the drop deformation due to stronger influence of matrix viscoelasticity as compared to the drop elasticity. The shear thinning viscoelastic drop-matrix system further restricts the drop deformation and it displays non-monotonic de-formation. The constant viscosity Boger fluid droplet curbs the drop deformation and exhibits flow dynamics identical to the shear thinning viscoelastic droplet, thus indicating that the nature of the drop viscoelasticity has little influence on the flow behaviour. The matrix viscoelasticity due to Boger fluid increases drop deformation and displays non-monotonic deformation. The drop deformation is further enhanced in the case of Boger fluid in viscoelastic drop-matrix system. Interestingly, the pressure drop due to the presence of viscoelastic drop in a Newtonian matrix is lower than the single phase flow of Newtonian fluid. We also discuss the effects of inertia, surface tension, drop to matrix viscosity ratio and the drop size on these drop-matrix systems. Finally, we investigate the emulsion rheology by studying the motion of a droplet in the square lid driven cavity flow. The viscoelastic effects due to constant viscosity Boger fluid and shear thinning viscoelastic fluid are illustrated using FENECR and Giesekus rheological relations, respectively. The presence of viscoelasticity either in drop or matrix phase boosts the drop deformation with the drop viscoelasticity displaying intense deformation. The drop dynamics due to the droplet viscoelasticity is observed to be independent of the nature of vis-coelastic fluid. The shear thinning viscoelastic matrix has a stronger influence on the drop deformation and orientation compared to the Boger fluid matrix. The different blood components, cells and many materials of industrial importance are viscoelastic in nature. Thus, the present study has significant applications in medical diagnostics, drug delivery, manufacturing and processing industries, study of biological flows, pharmaceutical research and development of lab-on-chip devices.

Page generated in 0.0848 seconds