Spelling suggestions: "subject:"viscoelastic parameters"" "subject:"viscoelastica parameters""
1 |
MEMS-based Mechanical Characterization of Micrometer-sized BiomaterialsKim, Keekyoung 24 September 2009 (has links)
The mechanical properties of biomaterials play important roles in performing their specialized functions: synthesizing, storing, and transporting biomolecules; maintaining internal structures; and responding to external environments. Besides biological cells, there are also many other biomaterials that are highly deformable and have a diameter between 1μm and 100μm, comparable to that of most biological cells. For example, many polymeric microcapsules for drug delivery use are spherical particles of micrometers size. In order to mechanically characterize individual micrometer-sized biomaterials, the capability of capturing high-resolution and low-magnitude force feedback is required.
This research focuses on the development of micro devices and experimental techniques for quantifying the mechanical properties of alginate-chitosan microcapsules. The micro devices include microelectromechanical systems (MEMS) capacitive force sensors and force-feedback microgrippers, capable of measuring sub-μN forces. Employing the MEMS devices, systems were constructed to perform the micro-scale compression testing of microcapsules.
The force sensors are capable of resolving forces up to 110μN with a resolution of 33.2nN along two independent axes. The force sensors were applied to characterizing the mechanical properties of hydrogel microparticles without assembling additional end-effectors. The microcapsules were immobilized by a PDMS holding device and compressed between the sensor probe and holding device. Young's modulus values of individual microcapsules with 1%, 2%, and 3% chitosan coating were determined through the micro-scale compression testing in both distilled deionized (DDI) water and pH 7.4 phosphate buffered saline (PBS). The Young's modulus values were also correlated to protein release rates.
Instead of compressing the microcapsule against the wall of the holding device, a force-feedback MEMS microgripper with the capability of directly compressing the microcapsule between two gripping arms has been used for characterizing both the elastic and viscoelastic properties of the microcapsules during micromanipulation. The single-chip microgripper integrates an electrothermal microactuator and two capacitive force sensors, one for contact detection (force resolution: 38.5nN) and the other for gripping force measurements (force resolution: 19.9nN). Through nanoNewton force measurements, closed-loop force control, and visual tracking, the system quantified the Young's modulus values and viscoelastic parameters of alginate microcapsules, demonstrating an easy-to-operate, accurate compression testing technique for characterizing soft, micrometer-sized biomaterials.
|
2 |
MEMS-based Mechanical Characterization of Micrometer-sized BiomaterialsKim, Keekyoung 24 September 2009 (has links)
The mechanical properties of biomaterials play important roles in performing their specialized functions: synthesizing, storing, and transporting biomolecules; maintaining internal structures; and responding to external environments. Besides biological cells, there are also many other biomaterials that are highly deformable and have a diameter between 1μm and 100μm, comparable to that of most biological cells. For example, many polymeric microcapsules for drug delivery use are spherical particles of micrometers size. In order to mechanically characterize individual micrometer-sized biomaterials, the capability of capturing high-resolution and low-magnitude force feedback is required.
This research focuses on the development of micro devices and experimental techniques for quantifying the mechanical properties of alginate-chitosan microcapsules. The micro devices include microelectromechanical systems (MEMS) capacitive force sensors and force-feedback microgrippers, capable of measuring sub-μN forces. Employing the MEMS devices, systems were constructed to perform the micro-scale compression testing of microcapsules.
The force sensors are capable of resolving forces up to 110μN with a resolution of 33.2nN along two independent axes. The force sensors were applied to characterizing the mechanical properties of hydrogel microparticles without assembling additional end-effectors. The microcapsules were immobilized by a PDMS holding device and compressed between the sensor probe and holding device. Young's modulus values of individual microcapsules with 1%, 2%, and 3% chitosan coating were determined through the micro-scale compression testing in both distilled deionized (DDI) water and pH 7.4 phosphate buffered saline (PBS). The Young's modulus values were also correlated to protein release rates.
Instead of compressing the microcapsule against the wall of the holding device, a force-feedback MEMS microgripper with the capability of directly compressing the microcapsule between two gripping arms has been used for characterizing both the elastic and viscoelastic properties of the microcapsules during micromanipulation. The single-chip microgripper integrates an electrothermal microactuator and two capacitive force sensors, one for contact detection (force resolution: 38.5nN) and the other for gripping force measurements (force resolution: 19.9nN). Through nanoNewton force measurements, closed-loop force control, and visual tracking, the system quantified the Young's modulus values and viscoelastic parameters of alginate microcapsules, demonstrating an easy-to-operate, accurate compression testing technique for characterizing soft, micrometer-sized biomaterials.
|
3 |
Développement d’un système à ondes acoustiques pour le suivi rhéologique de la polymérisation de protéines. Application à la maladie d’Alzheimer. / Development of an acoustic waves sensor for rheological monitoring of proteins polymerization. Application to Alzheimer's disease.Didier, Pierre 08 June 2017 (has links)
La mise au point de nouveaux systèmes biocompatibles de suivi des phénomènes de polymérisation de protéines est un enjeu majeur pour la compréhension des mécanismes moléculaires en vue d’une détection et d’un traitement précoce des pathologies dites conformationnelles telles que la maladie d’Alzheimer ou les maladies à prions. Dans ces pathologies, des protéines ou des fragments de celles-ci perdent leur structure, puis s’assemblent en fibres ordonnées au sein d’agrégats. Les mécanismes moléculaires du changement de conformation d'une protéine et sa polymérisation en fibres amyloïdes sont encore largement inconnus. La compréhension de ces mécanismes et le diagnostic sont étroitement liés à la disponibilité d’un concept analytique performant pour le suivi ex vivo de ces phénomènes.Pour répondre à cette problématique, un microsystème a été mis au point pour la détection et le suivi de polymérisation de la protéine tau et du peptide Aß, principaux biomarqueurs de la maladie d’Alzheimer. Le microcapteur est basé sur la propagation d’ondes acoustiques hautes fréquences qui permettent d’extraire les propriétés rhéologiques du milieu cible. En mesurant l’impédance complexe du biocapteur, un traitement du signal dédié permet l’extraction des paramètres viscoélastiques (module élastique et module visqueux). L’étude et le développement de ce microsystème impliquent un savoir-faire pluridisciplinaire en instrumentation : élaboration et conception et modélisation de biocapteurs, conditionnement des signaux et résolution des problèmes inverses associés.Tout d’abord, le capteur a été optimisé pour améliorer sa sensibilité et permettre le suivi de polymérisation. Un travail sur la faisabilité du système a montré la possibilité de discriminer des solutions de protéines de différentes concentrations. La finalité du système de détection étant la détection simultanée des différents biomarqueurs à l’origine de la maladie d’Alzheimer, un capteur multi-électrodes permettant la détection de ces différents analytes a été développé. / The development of new biocompatible systems for monitoring protein polymerization processes is a key issue for understanding the molecular mechanisms of detection and for early treatment of so-called conformational diseases such as Alzheimer's disease or prion diseases. In these pathologies, proteins or fragments lose their structure and then assemble themselves into ordered fibers within aggregates. The molecular mechanisms of the conformational changes of a protein and its polymerization into amyloid fibers are still largely unknown. Understanding these mechanisms and diagnosis are closely related to the availability of an efficient analytical concept for the ex vivo monitoring of these phenomena.To address this problem, a microsystem has been developed for the detection and monitoring of polymerization of tau and Aß peptide, the main biomarkers of Alzheimer's disease. The microsensor is based on the propagation of acoustic high frequency waves that extract the rheological properties of the target environment. By measuring complex impedance of the biosensor, a dedicated signal processing allows the extraction of viscoelastic parameters (viscosity and elasticity). The study and development of this microsystem involve multidisciplinary expertise in instrumentation: development and design and modeling of biosensors, signal conditioning and solving associated inverse problems.First, the sensor has been optimized to improve its sensitivity and allow tracking of polymerization. Work on the feasibility of the system showed the ability to discriminate protein solutions of different concentrations. Since the purpose of the detection system is the simultaneous detection of different biomarkers responsible for Alzheimer's disease, a multi-electrode sensor for the detection of these different analytes has been developed. The optimization of the sensor, the microfabrication processes and chemical surface treatments are also developed in this work.
|
4 |
Élastographie par résonance magnétique et onde de pression guidée / Magnetic resonance elastography and guided pressure wavesTardieu, Marion 16 July 2014 (has links)
Les propriétés mécaniques des tissus biologiques sont des paramètres importants en médecine : ce sont des biomarqueurs du fonctionnement normal ou pathologique d'un tissu. En effet, ces propriétés peuvent être affectées par certaines conditions mécaniques telles que l'application d'une contrainte externe, comme l'hypertension ou un traumatisme, mais également par la présence de certaines maladies, telles que le cancer, la fibrose, l’inflammation, la maladie d'Alzheimer, ou bien tout simplement avec l'âge. La palpation réalisée par le médecin permet de discerner ces changements mais ce geste est qualitatif et ne peut accéder à des organes profonds. L'élastographie-IRM reste une méthode quantitative, robuste, d'une grande précision, qui permet de sonder l'élasticité et la viscosité des tissus. Elle consiste à mesurer le champ de déplacement d'une onde de cisaillement induite dans l'organe ciblé par une technique IRM en contraste de phase. Les modules viscoélastiques sont alors déduits après inversion de l'équation d'onde. Malgré cela, la justesse de cette technique n'a pas encore été pleinement établie. L'élastographie-IRM est en cours d'implémentation en routine clinique sur des patients atteints de maladies hépatiques chroniques ou bien pour caractériser des tumeurs dans le cas de cancer du sein. L'application aux autres organes protégés, tels que le cerveau ou les poumons, reste encore du domaine de la recherche à cause de la difficulté d'y induire des ondes mécaniques (protection naturelle de la boîte crânienne ou de la cage thoracique). C'est dans ce contexte qu'intervient un volet de mon travail de thèse : la mise en place, la caractérisation et l'optimisation d'un système induisant des ondes mécaniques dans les organes profonds. L’approche originale suivie a été d’utiliser les voies naturelles permettant d’amener l’onde de pression aux poumons ou bien à l’encéphale, différente des approches classiques consistant à traverser les barrières protectrices. Ce générateur d'onde de pression nous a permis d'obtenir des amplitudes d'onde allant de 6 µm à 30 µm dans l'ensemble du cerveau, amplitudes suffisantes afin d'en déduire les modules viscoélastiques du cerveau entier. D'autre part, un travail important s'est attaché à la réalisation d'un schéma original de correction des mouvements du patient en élastographie-IRM. Nous avons mis en évidence comment ces mouvements peuvent entraîner une discordance des composantes du champ de déplacement, nécessitant alors d'être corrigées. La correction proposée est composée d'une première étape dont la finalité est de recaler spatialement l'ensemble des volumes acquis, puis d'une seconde étape permettant de rétablir les composantes du champ de déplacement dans la même base orthonormée. Nous avons évalué numériquement et expérimentalement le biais induit quand aucunes corrections n'étaient appliquées sur ces données ainsi que l'apport de ces deux étapes de correction. Un travail préliminaire sur l'étude de la reproductibilité des acquisitions (phase en particulier) a été nécessaire. Enfin, l'ensemble des résultats de ces deux volets nous ont permis de réaliser des acquisitions d'élastographie du cerveau complet et d'obtenir des cartes du champ de déplacement de qualité. Ainsi, nous avons pu montrer la tendance des ondes mécaniques à suivre les directions privilégiées des fibres du cerveau, résultats que nous avons commencé à confronter aux observations faites en DTI. / Mechanical properties of biological tissues are important parameters in medicine: they are normal or pathological function biomarkers of tissue. Indeed, these properties can be affected by some mechanical conditions such as the application of an external constraint, like hypertension or trauma, but also by the presence of certain diseases, such as cancer, fibrosis, inflammation, Alzheimer’s disease, or simply with age. Palpation performed by the physician can detect these changes but this gesture is qualitative and can not access deep organs. MR-elastography remains a quantitative and robust method of high precision, which probes elasticity and viscosity of tissues. It consists in measuring the displacement field of a shear wave induced in the target organ by a phase contrast based MRI technique. The viscoelastic moduli are deducted after inversion of the wave equation. Nevertheless, the accuracy of this technique has not yet been fully established. MR-elastography is being implemented in routine clinical practice for patients with chronic liver diseases or to characterize tumors in the case of breast cancer. Application to other protected organs, such as the brain or lungs, is still in research area because of the difficulty to induce mechanical waves (natural protection of the skull or the rib cage). It is in this context that a part of my thesis work is involved: the establishment, characterization and optimization of a system inducing mechanical waves in deep organs. The original approach was to use anatomical pathways for bringing the pressure waves to the lungs or the brain, different from conventional approaches of traversing the protective barriers. This pressure wave generator allowed us to obtain wave amplitudes ranging from 6 µm to 30 µm in the whole brain, sufficient amplitudes to deduce the whole brain viscoelastic moduli. On the other hand, an important work has focused on the realization of an original scheme of patient motions correction in MR-elastography. We have brought out how these motions can cause a mismatch of the displacement field components, which need to be corrected. The proposed correction is composed of a first step whose purpose is to spatially realign all acquired volumes, then a second step to restore the displacement field components in the same orthonormal basis. We numerically and experimentally evaluated the bias when no corrections were applied to these data and the contribution of these two correction steps. A preliminary work on the study of the acquisitions reproducibility (particularly phase) was necessary. Finally, all the results of these two components have allowed us to realize elastography acquisitions of the whole brain and obtain quality displacement field maps. Thus, we showed the trend of mechanical waves to follow the brain fibers preferred directions, results that we started to compare to the observations made by DTI.
|
5 |
Vliv probíhající gravidity na mechanické parametry vlasů / Changes in the mechanical parameters of women's hair during pregnancySkřontová, Marie January 2017 (has links)
Title: Changes in the mechanical parameters of women's hair during pregnancy Matters: We can look from different angles on the hair - as on a nanocomposite fiber and as on biomaterial changing with the origin and age. The hair doesn't differ only by lenght, stucture and color but also by diameter and shape. It reflects the overall health of the individual and all the processes in the organism of the individual and thus also the pregnancy. During pregnancy, hormonal changes take place which have an effect on the hair. Many women experience faster hair growth, extension and increased volume of the hair during pregnancy. This status is only temporary and lasts only to the childbirth. Aim: The aim of this work was to show the influence of pregnancy on mechanical parameters of hair and what direction this influence takes. Next, using questionnaires, to better solve the effect of particular pregnancy parameters on the hair, i.e. pregnancy order, sex of the child. Then, evaluate the whole problem using statistical tests and so make better sense of it. Methods: We'd selected a group of 64 pregnant women; hair samples were cut from them in the nape area each month throughout pregnancy. Each measurement started with evaluation of hair diameter with the use of optical microscope. Next, the hair had been...
|
6 |
Vliv probíhající gravidity na mechanické parametry vlasů / Changes in the mechanical parameters of women's hair during pregnancySkřontová, Marie January 2017 (has links)
Title: Changes in the mechanical parameters of women's hair during pregnancy Matters: We can look from different angles on the hair - as on a nanocomposite fiber and as on biomaterial changing with the origin and age. The hair doesn't differ only by lenght, stucture and color but also by diameter and shape. It reflects the overall health of the individual and all the processes in the organism of the individual and thus also the pregnancy. During pregnancy, hormonal changes take place which have an effect on the hair. Many women experience faster hair growth, extension and increased volume of the hair during pregnancy. This status is only temporary and lasts only to the childbirth. Aim: The aim of this work was to show the influence of pregnancy on mechanical parameters of hair and what direction this influence takes. Next, using questionnaires, to better solve the effect of particular pregnancy parameters on the hair, i.e. pregnancy order, sex of the child. Then, evaluate the whole problem using statistical tests and so make better sense of it. Methods: We'd selected a group of 64 pregnant women; hair samples were cut from them in the nape area each month throughout pregnancy. Each measurement started with evaluation of hair diameter with the use of optical microscope. Next, the hair had been...
|
Page generated in 0.1007 seconds