Spelling suggestions: "subject:"viscoelasticity."" "subject:"iscoelasticity.""
391 |
MATERIAL PROPERTIES OF AORTA FROM BIAXIAL OSCILLATORY TESTSRomanov, Vasily Vladimirovich January 2010 (has links)
This project addresses characterization of the material properties of aortic tissue. Understanding of these properties is important for a variety of studies including tissue engineering, effects of aging and diseases, stents engineering, and traumatic aorta rupture. The goal of the presented research was to characterize the stress-strain relationship of aorta in dynamic oscillatory biaxial loading. A setup was developed that supplied pressure loading from the physiological to sub-failure levels (between 7 and 76 kPa) to porcine aorta at frequencies ranging from 0.50Hz to 5.00Hz. Samples tested were constrained at both ends while the deformation and the pressure were recorded. Volumetric strain versus pressure was used to characterize the structural behavior of the material which showed frequency dependency and hysteresis indicating viscoelastic response. An offset method was developed to account for drifting behavior exhibited by some of the samples. The structural behavior of aorta was modeled using a quasi-linear viscoelastic (QLV) creep theory. The QLV model included a logarithmic steady state elastic function v = 0.663 +/- 0.040 + 0.241 +/- 0.011 ln(P) for pressure in kPa, and a Prony series creep function ( J0 = 0.472 +/- 0.021, J2 = 0.109 +/- 0.060, J3 = 0.419 +/- 0.056). Modeling results were then used to determine the relationships between the circumferential and longitudinal stresses and strains of the material. The results exhibited that the stress in the transverse direction was about 1.5 times larger than in the axial direction. However, in the axial direction material was stiffer and the deformation was 30% less. The relaxation function of the material was determined by linearizing the non-linear component of the QLV model and applying to it the linear viscoelastic theory. Furthermore, literature comparison revealed that aorta's creep function, as well as its elastic modulus, is within the range of what has been reported in the literature. In conclusion, an experimental model was developed that can be used to predict the behavior of porcine aorta under physiological and sub-failure conditions at quasi-static and dynamic loading. / Mechanical Engineering
|
392 |
Toward a Universal Constitutive Model for Brain TissueShafieian, Mehdi January 2012 (has links)
Several efforts have been made in the past half century to characterize the behavior of brain tissue under different modes of loading and deformation rates; however each developed model has been associated with limitations. This dissertation aims at addressing the non-linear and rate dependent behavior of brain tissue specially in high strain rates (above 100 s-1) that represents the loading conditions occurring in blast induced neurotrauma (BINT) and development of a universal constitutive model for brain tissue that describes the tissue mechanical behavior from medium to high loading rates.. In order to evaluate the nature of nonlinearity of brain tissue, bovine brain samples (n=30) were tested under shear stress-relaxation loading with medium strain rate of 10 s-1 at strain levels ranging from 2% to 40% and the isochronous stress strain curves at 0,1 s and 10 s after the peak force formed. This approach enabled verification of the applicability of the quasilinear viscoelastic (QLV) theory to brain tissue and derivation of its elastic function based on the physics of the material rather than relying solely on curve fitting. The results confirmed that the QLV theory is an acceptable approximation for engineering shear strain levels below 40% that is beyond the level of axonal injury and the shape of the instantaneous elastic response was determined to be a 5th order odd polynomial with instantaneous linear shear modulus of 3.48±0.18 kPa. To investigate the rate dependent behavior of brain tissue at high strain rates, a novel experimental setup was developed and bovine brain samples (n=25) were tested at strain rates of 90, 120, 500, 600 and 800 s-1 and the resulting deformation and shear force were recorded. The stress-strain relationships showed significant rate dependency at high rates and was characterized using a QLV model with a 739 s-1 decay rate and validated with finite element analysis. The results showed the brain instantaneous elastic response can be modeled with a 3rd order odd polynomial and the instantaneous linear shear modulus was 19.2±1.1 kPa. A universal constitutive model was developed by combining the models developed for medium and high rate deformations and based on the QLV theory, in which the relaxation function has 5 time constants for 5 orders of magnitude in time (from 1 ms to 10 s) and therefore, is capable of predicting the brain tissue behavior in a wide range of deformation rates. Although the universal model presented in this study was developed based on only shear tests and the material parameters could not be found uniquely, by comparing the results of this study with previously available data in the literature under tension unique material parameters were determined for a 5 parameter generalized Rivlin elastic function (C10=3.208±0.602 kPa, C01=4.191±1.074 kPa, C11=79.898±18.974 kPa, C20=-37.093±7.273 kPa, C02=-37.712±5.678 kPa). The universal constitutive model for brain tissue presented in this dissertation is capable of characterizing the brain tissue behavior under large deformation in a wide range of strain rates and can be used in computational modeling of Traumatic Brain Injury (TBI) to predict injuries that result from falls and sports to automotive accidents and BINT. / Mechanical Engineering
|
393 |
Time-dependent strain accumulation and release at island arcs : implications for the 1946 Nankaido earthquakeSmith, Albert Turner January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Vita. / Bibliography: leaves 256-266. / by Albert Turner Smith, Jr. / Ph.D.
|
394 |
An experimental and numerical analysis of the exit flow in a slit die for polymer meltsRead, Michael David January 1986 (has links)
A slit die has been constructed to use both flow birefringence and direct pressure measurements to study the extrapolated exit pressure (Px) and the exit pressure theory used to evaluate the magnitude of the primary normal stress difference (N1) from the value of the exit pressure. Flow birefringence is used to directly assess the principal assumptions in the exit pressure theory and to evaluate the magnitude of Px from an expression derived from the macroscopic momentum balance equation. The effect of stress field rearrangement upstream of the die exit plane on the value of the exit pressure was then evaluated using flow birefringence data. The effect of stress field rearrangement was also shown to affect the pressure drop ΔP/ΔL in the exit region of the die and the pressure distribution from the centerline of the slit to the die wall. To complement the experimental investigation, a mixed penalty method finite element simulation of the die swell problem was performed using the White-Metzner and upper-convected Maxwell constitutive equations.
The flow birefringence experiments were performed for a polystyrene (Styron 678), LDPE (NPE 952), and HDPE (LY600-00) melts for the following shear rate (γ̇) and wall shear stress (σw) 0.05 ≤ γ̇w ≤ 3.2 s⁻¹ and 4.84 ≤ σw ≤ 16.4 KPa. It was found that the flow in the die exit region is not a unidirectional shear flow, which is direct violation of the assumptions in the exit pressure theory. Normal stresses generated by an elongational flow field were observed along the slit centerline and in the region adjacent to the die walls. Also, shear stress contributions due to stress field rearrangement evaluated using an expression obtained from a macroscopic momentum balance, comprise over 50% of the magnitude of the calculated exit pressure. The numerically calculated stress field was in good agreement with the results of the flow birefringence results. Convergence for the numerical technique was limited to Deborah numbers of 0.61 for the White-Metzner model and 0.75 for the upper-convected Maxwell constitutive equation. / Ph. D.
|
395 |
Investigation of Adhesive and Electrical Performance of Waterborne Epoxies for Interlayer Dielectric MaterialJackson, Mitchell L. 30 November 1999 (has links)
The primary differences between the solventborne and waterborne epoxy printed circuit board (PCB) impregnating resins arise from the distinct physical compositions and drying characteristics of the polymer solution and the latex emulsion. The presence of residual surfactant from the waterborne epoxy emulsion poses a concern for dielectric performance and adhesive durability. Another problem involves the crystallization of insoluble solid dicyandiamide (DICY), which is significantly different in morphology than that found in solution cast resins.
A two-stage drying model was employed to gain a better understanding the drying and coalescence processes. The process of surface DICY crystal formation during the drying of glass prepreg sheet was related to a threshold concentration of the curing agent in the impregnating latex resin formulation. Conditions favoring faster drying lead to the rapid formation of a coalesced skin layer of latex resin, thereby trapping the curing agent in the bulk and reducing the surface deposition of DICY by percolating water. Surfactant is believed to remain concentrated in a receding wet zone until it is driven to the surfaces of the glass fibers upon the completion of drying.
The copper foil/laminate interface was evaluated by a 90° peel test as part of two different studies: an analysis of the viscoelastic response of the interface during peel and a study of the thermal durability of the copper/laminate interfacial peel strength. The surfactant acted as a plasticizer to toughen the fiber/matrix interphase, resulting in larger observed peel strengths in the latex resin impregnated materials relative to the solventborne system. Surfactant segregated to the fiber surface during coalescence to form a plasticized fiber/matrix interphase; surfactant migrated into the bulk during postcure to yield a more homogeneously plasticized epoxy matrix.
Dielectric measurements of neat resin and laminate materials revealed that the dielectric constants of the model resin-impregnated laminates met the performance criteria for PCB substrates of their class, regardless of surfactant content.
Overall, the adhesive performance, adhesive durability, and dielectric properties of PCB systems fabricated with model latex epoxy resin, containing native surfactant (5 wt %), met or exceeded the performance of an equivalent solventborne resin impregnated system. / Ph. D.
|
396 |
Nuclear magnetic resonance and rheo-NMR investigations of wormlike micelles, rheology modifiers, and ion-conducting polymersWilmsmeyer, Kyle Gregory 26 October 2012 (has links)
Investigation and characterization of polymeric materials are necessary to obtain in-depth understanding of their behavior and properties, which can fuel further development. To illuminate these molecular properties and their coupling to macroscopic behavior, we have performed nuclear magnetic resonance (NMR) studies on a variety of chemical systems. In addition to versatile "traditional" NMR measurements, we took advantage of specialized techniques, such as "rheo-NMR," 2H NMR, and NMR self-diffusion experiments to analyze alignment, orientational order, elaborate rheological behavior, and ion transport in polymer films and complex fluids.
We employed self-diffusion and quadrupolar deuterium NMR methods to water-swollen channels in Nafion ionomer films commonly used in fuel cells and actuators. We also correlated water uptake and anisotropic diffusion with differing degrees and types of alignment in Nafion films based on membrane processing methods. Further, we made quantitative measurements of bulk channel alignment in Nafion membranes and determined anisotropic properties such as the biaxiality parameter using these methods. Additionally, our studies made the first direct comparison of directional transport (diffusion) with quantitative orientational order measurements for ionomer membranes. These results lend insight to the importance of water content in ionomer device performance, and showed that increased control over the direction and extent of orientational order of the hydrophilic channels could lead to improved materials design.
We used the same techniques, with the addition of "rheo-NMR" and solution rheology measurements, to study the complex rheological behavior of cetyltrimethylammonium bromide wormlike micelle solutions, which behave as nematic liquid crystals at sufficiently high concentration. Amphiphilic solutions of this type are used in myriad applications, from fracturing fluids in oil fields to personal care products. We investigated the phase behavior and dynamics of shear and magnetic field alignment, and made the first observations of a novel bistable shear-activated phase in these solutions. Our first reports of the complex Leslie-Ericksen viscoelastic parameters in wormlike micelles and measurements of diffusion anisotropy show the potential for increased control and understanding of materials used in tissue engineering, oil extraction, personal care products, and advanced lubricants. / Ph. D.
|
397 |
Characterization of Sulfonated Perfluorocyclobutane /Poly(Vinylidene Difluoride)-co-Hexafluoropropylene (PFCB/PVDF-HFP) Blends for Use as Proton Exchange MembranesFinlay, Katherine A. 22 April 2013 (has links)
The research herein focuses on the characterization of a PFCB/PVDF-HFP (70:30 wt:wt) blend fuel cell membrane including the constitutive and morphological properties, how these properties predict the stresses incurred under fuel cell operating conditions, and how these properties change over time under fuel cell operating conditions. Characterization was performed to mimic temperature and moisture conditions found in operating fuel cells to understand how these materials will behave in service. This included thermal and hygral expansion, mass uptake, and the stress relaxation modulus. These constitutive properties were chosen for characterization such that a model could be created to predict the stresses incurred during fuel cell operation, and examine how these stresses may change under different operating conditions and over time. Based on the results of this model, lifetime predictions were made resulting in recommendations to further extend the operating time of this membrane beyond the DOE 5000 hr requirement.
Stress predictions are useful, however if the material properties are changing over time under the fuel cell operating conditions, they may no longer be valid. Therefore, PFCB/PVDF-HFP membranes were conditioned for different amounts of time under conditions similar to those commonly found in operating fuel cells. These conditioned membranes were then characterized and compared with solvent exchanged membranes, the same materials used for previous material characterization. The properties examined included stress relaxation modulus, bi-axial strength, mass uptake, water diffusion, and proton conductivity. To further understand any changes noted in these properties after different environmental exposures, morphological analysis was performed. This included small angle x-ray scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry.
It was initially found that the proton conductivity decreased severely when the material was immersed at high temperatures over short time periods. This was consistent with changes noted in other properties, and morphological analysis showed a decrease in the ionic network as well as an increase in the phase separation of the PFCB block copolymer as well as the PVDF-HFP crystallinity. These large morphological changes could be very detrimental while in service, resulting in early termination of the fuel cell. However, it was also noted that if these materials are annealed at high temperature (140"C), the negative property changes are abated. This abatement is again tied to the morphology of the material, as annealing the material at high temperature creates stronger physical crosslinks, and induces a small amount of chemical crosslinking via condensation of the sulfonic acid groups, thus allowing the stress predictions performed earlier to have greater validity. Therefore, it is important to not only understand the properties of a material during characterization, but also the underlying polymer structure, and how this structure can change over time, as all of these items control the long term material performance while in service. / Ph. D.
|
398 |
Mechanisms and mechanics of non-structural adhesionRandow, Charles L. 07 November 2008 (has links)
Two topics dealing with adhesion are addressed: an investigation of the cling of thin polymeric films and an analysis of the effects of viscoelasticity on adhesive systems involving curvature mismatch. The results of an investigation into the mechanisms of adhesion and debonding energy associated with the cling between polymeric films and various substrates is presented first. The thermodynamic work of adhesion, electrostatic attraction, and substrate roughness apparently play significant roles in the cling of a film to a substrate. Peel tests are conducted and strain energy release rates are determined which show different debonding energies for the various film-substrate systems. In the analysis of adhesive systems involving curvature mismatch, the focus of the work is on modeling the bond behavior using the solution to the beam on a viscoelastic foundation problem. In addition, the behavior of the adhesive is modeled with a recursive technique using a stress distribution obtained from the solution to the beam on an elastic foundation problem. Debond rate tests are described and conducted so that experimental results may be compared with analytical results. For both adhesion topics, the mechanisms and mechanics of adhesion are considered and experimental tests are conducted. / Master of Science
|
399 |
Estimation of Elastic and Damping Characteristics of Viscoelastically Constrained Carbon StrandsVasudeva, Sumit 05 January 2006 (has links)
Traditional large space structure construction incorporates the use of lightweight tubular metal alloys that have good strength to weight and stiffness to weight ratio. Recently, however, space structure construction has shifted focus on materials that are ultra lightweight, have high strength, have low package volume and possess excellent damping characteristics. Substantial damping is required in space since there is no surrounding medium to provide damping. Such a construction uses composites in a fabric form that displays viscoelastic behavior. The viscoelastic behavior is attributed to energy dissipation because of the shear stresses between the various fibrous strands that are kept in place by constraining viscoelastic layers. This type of vibration control falls under the rubric of passive damping of structures and has been found to have certain advantages over active damping such as less complexity as it does not require sensors, actuators and power supply that are needed for active damping.
One such material consists of woven carbon strands constrained by layers of viscoelastic damping material. Dynamics and buckling behavior of a structure in the form of a tube made from this material with metallic end caps is modeled and analyzed using commercially available Finite Element Analysis code ABAQUS®. The current analysis deals with the non-pressurized tube since the structure can maintain the tubular configuration as well as support end caps on account of the stiffness provided by the composites. Since no simple analytical approaches are available to predict damping of these materials, experimental data was used to estimate the damping characteristics of the material. The mass of the end cap was also estimated from the experimental impulse response as exact mass of the end cap (that was rigidly fixed to the tube) was unknown. / Master of Science
|
400 |
Nonlinear Viscoelastic Behavior of Ligaments and Tendons: Models and ExperimentsDavis, Frances Maria 04 June 2013 (has links)
Ligaments and tendons are rope-like structures in our body that possess time- and history-dependent material properties. Despite the many advances made in experimental and theoretical biomechanics, the material properties of these biological structures are still not fully characterized. This dissertation represents a step forward in the development of combined theoretical and experimental tools that capture the time- and history-dependent material properties of ligaments and tendons.
The mechanical behavior of bundles of collagen fibers which form ligaments and tendons was investigated. Axial stress-stretch data and stress relaxation data at different axial stretches were collected by testing rat tail tendon fascicles. The experimental results demonstrated, for the first time, that the shape of the normalized axial stress relaxation curve depends on the axial stretch level thus suggesting that the fascicles are nonlinear viscoelastic. A constitutive model was then formulated within the nonlinear integral representation frame- work proposed by Pipkin and Rogers (1968). Unlike the well-known quasi-linear viscoelastic model, the proposed constitutive law was able to capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.
By extending the constitutive model for collagen fiber bundles, a new nonlinear three- dimensional model for the stress relaxation of skeletal ligaments was formulated. The model accounts for the contribution of the collagen fibers and the group substance in which they are embedded. Published uniaxial experimental data on the stress relaxation of human medial collateral ligaments were used to determine the model parameters. The model predictions for simple shear in the fiber direction, simple shear transverse to the fiber direction, and equibiaxial extension were then examined and, for the case of simple shear in the fiber direction, such predictions were found to be in good agreement with published experimental data.
The relationship between the mechanical response and structure of suspensory ligaments was examined by performing state-of-the-art small angle x-ray diffraction experiments in tandem with incremental stress relaxation tests. Specifically, small angle x-ray diffraction was used to measure changes in strain and orientation of collagen fibrils during the stress relaxation tests. Throughout the tests the collagen fibrils were found to gradually orient towards the loading direction. However, the collagen fibril strain did not change significantly suggesting that collagen fibers do not play a significant role in dissipating load during stress relaxation. / Ph. D.
|
Page generated in 0.1072 seconds