• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 512
  • 182
  • 85
  • 74
  • 61
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 5
  • Tagged with
  • 1148
  • 175
  • 143
  • 108
  • 102
  • 98
  • 78
  • 67
  • 58
  • 56
  • 55
  • 55
  • 54
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Transport properties of liquids and liquid mixtures and the theorem of corresponding states.

Doan, Manh Hung. January 1971 (has links)
No description available.
122

Effects of polymers on the impingement of colloidal particles onto flat surfaces

Varennes, Suzanne January 1987 (has links)
No description available.
123

The lateral migration of spherical particles in a fluid bounded by parallel plane walls.

Vasseur, Patrick. January 1973 (has links)
No description available.
124

Surface area and viscosity relationship for minerals.

Yen, Wan-Tai. January 1968 (has links)
No description available.
125

A Rheological Study of Three Linear Low Density Polythylene Film Resins

Samurkas, Tony January 1985 (has links)
Note:
126

The viscosity of particulate - glass suspensions /4cby Rasheed Ali Zaidi.

Ali-Zaidi, Syed Rasheed January 1975 (has links)
No description available.
127

A study of microemulsion viscosity with consideration of polymer and co-solvent additives

Dashti, Ghazal 22 July 2014 (has links)
With the dramatic increase in the worldwide demand for the crude oil and with the fact that the oil and gas resources are depleting, the enhanced oil recovery process plays an important role to increase the production from the existing hydrocarbon reservoirs. Chemical enhanced oil recovery is one of the most important techniques to unlock significant amount of trapped oil from oil reservoirs. Surface agent materials (Surfactants) are used to lower the interfacial tension (IFT) between water and oil phases to ultralow values and mobilize the trapped oil. When surfactant, water, and oil are mixed together they form a thermodynamically stable phase called microemulsion which can be characterized by ultralow interfacial tension and the ability to solubilize both aqueous and oil compounds. Another characteristic of microemulsion solution is its viscosity which plays an important role in the creation and movement of the oil bank. The microemulsion micro-structure is complex and its viscosity is difficult to predict. Various viscosity models and correlations are presented in the literature to describe microemulsion viscosity behavior, but they fail to represent the rheological behavior of many microemulsion mixtures. Most of these models are valid in the lower and higher ranges of solute where one of the domains is discontinuous. The majority of the models fail to calculate the rheology of microemulsion phase in bicontinuous domains. In this work, we present a systematic study of the rheological behavior of microemulsion systems and the effect of additives such as polymer and co-solvent on rheological properties of microemulsions. Several laboratory experiments were conducted to determine the rheological behavior of surfactant solutions. A new empirical model for the viscosity of microemulsion phase as a function of salinity is introduced. The model consists of three different correlations one for each phase type of Windsor phase behaviors. The proposed model is validated using a number of experimental results presented in this document. The proposed viscosity model is implemented in the UTCHEM simulator and the simulator results are compared with the coreflood experiments. Excellent matches were obtained for the pressure. We further improved the proposed viscosity model to incorporate the effect of polymer and co-solvent on the microemulsion viscosity. / text
128

EFFECT OF VOID VOLUME ON THE FRICTION AND RHEOLOGY OF CONCENTRATED SLURRIES.

Lezzar, Ahmed. January 1983 (has links)
No description available.
129

THE RHEOLOGY OF CONCENTRATED CELLULOSIC SLURRIES.

Chehab, Mohamad Nabil. January 1982 (has links)
No description available.
130

Studies of the Application of Empirical Viscosity Models and Fuzzy Logic to the Polymer Extrusion Process Control

Chen, Zwea-long 20 May 2003 (has links)
In the polymer extrusion process the product quality like mechanical, optical, electrical properties and homogeneity etc. can be achieved by controlling the melt temperature, melt pressure or viscosity within a narrow fluctuation range. In the earlier studies there are many literatures in connection with the extrusion quality and related quality controls; i.e. temperature control, pressure control and viscosity control. In each of the control strategies, it is believed that the most effective to maintain product quality utilising viscosity control, because a polymer viscosity closely correlates with its composition and molecular distribution, and hence the characteristic of the material. In the viscosity control strategy, viscosity is an induced variable calculated from either the (1) flow rate and pressure drop with in-line rheometer or (2) melt temperature, screw speed (or pressure), geometrical dimensions of extruder, and extrusion material constants without in-line rheometer; the former method may interfere the output rate while the latter one does not. On the demand of using viscosity-measuring instruments as sensors to control the quality of the products, we developed an empirical off-line viscosity model, which is used to derive the extrusion viscosity models in the control process without in-line rheometer. The off-line viscosity model is proved more accuracy than other previous suggested models, such as WLF and Andrade¡¦s equations, to fit the experimental data. Polypropylene (PP) was used in this study to test the effectiveness of the extrusion viscosity models. Comparing the calculated results, it was found that the viscosity characteristics obtained by the extrusion viscosity models are in agreement with those obtained by using an in-line rheometer. Both methods can be used to obtain the viscosity in the polymer extrusion process. The objective of this study is to develop extrusion viscosity models together with collected data from several experimental tests and template rule-base to build a Multi-Input Multi-Output (MIMO) fuzzy logic closed-loop controller for the plastics extrusion control. The objective of this controller is to eliminate process variations and to produce the polymer of consistent quality. The fuzzy logic is provided for designing the MIMO closed-loop controller because it is suitable for applying to the polymer extrusion process control with such advantages as handling complex problems like non-linear, time varying behaviour and poor quality measurements happened in the extrusion process, etc. The experimental pre-tests include (1) investigation of the relationship between melt temperature and barrel setting temperatures (2) investigation of the relationship between melt pressure and screw speed and (3) building the relation equation between measured viscosity, melt temperature and speed for the in-line rheometer, etc. In order to test the effectiveness of the MIMO FLC, an off-line simulation program is developed, and the closed-loop tests are performed on the extruder. The test results prove that the designed MIMO FLC can effectively control the quality of products.

Page generated in 0.0344 seconds