Spelling suggestions: "subject:"viscous flowsimulation methods"" "subject:"viscous flows.simulation methods""
1 |
Numerical simulation of viscous and turbulent flows over two-dimensional bluff obstructions by body-fitted coordinates and two-equation model of turbulenceYeung, Pui-kuen, 楊沛權 January 1984 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
2 |
Adaptive finite element simulation of incompressible viscous flowFithen, Robert Miller 06 June 2008 (has links)
A finite element method is employed for solving two- and three-dimensional incompressible flows. The formulation is based on a segregated solution method. In this segregated formulation, the velocities and pressures are uncoupled and the equations for each are solved one after the other. This segregated solution method is numerically compared to the penalty method and to previous reported data to determine its validity. Next an iterative solution method which employs an element by - element data structure of the finite element method is developed. Two types of iterative methods are used. For a symmetric stiffness matrix, the conjugate gradient method is used. For an unsymmetric stiffness matrix, the bi-conjugate gradient method is used. Both iterative solution methods make use of a diagonal preconditioning method (Jacobi preconditioning). Several problems are solved using this segregated method. In two-dimensions, flow over a backward facing step and flow in a cavity are investigated. In three-dimensions, the problems include flow in a cavity at Reynolds number 100 and 1000, and flow in a curved duct. The simulation compares very well with previously reported data, where available. / Ph. D.
|
3 |
Adaptive finite element simulation of flow and transport applications on parallel computersKirk, Benjamin Shelton 28 August 2008 (has links)
Not available / text
|
4 |
Adaptive finite element simulation of flow and transport applications on parallel computersKirk, Benjamin Shelton, 1978- 23 August 2011 (has links)
Not available / text
|
5 |
Three-dimensional hybrid grid generation with application to high Reynolds number viscous flowsAthanasiadis, Aristotelis 29 June 2004 (has links)
In this thesis, an approach is presented for the generation of grids suitable for the simulation of high Reynolds number viscous flows in complex three-dimensional geometries. The automatic and reliable generation of such grids is today on the biggest bottlenecks in the industrial CFD simulation environment.<p><p>In the proposed approach, unstructured tetrahedral grids are employed for the regions far from the viscous boundaries of the domain, while semi-structured layers of high aspect ratio prismatic and hexahedral elements are used to provide the necessary grid resolution inside the boundary layers and normal to the viscous walls. The definition of the domain model is based on the STEP ISO standard and the topological information contained in the model is used for applying the hierarchical grid generation parameters defined by the user. An efficient, high-quality and robust algorithm is presented for the generation of the unstructured simplicial (triangular of tetrahedral) part of the grid. The algorithm is based on the Delaunay triangulation and the internal grid points are created following a centroid or frontal approach. For the surface grid generation, a hybrid approach is also proposed similar to the volume.<p>Semi-structured grids are generated on the surface grid (both on the edges and faces of the domain) to improve the grid resolution around convex and concave ridges and corners, by aligning the grid elements in the directions of high solution gradients along the surface. A method is also developed for automatically setting the grid generation parameters related to the surface grid generation based on the curvature of the surface in order to obtain an accurate and smooth surface grid. Finally, a semi-structured prismatic/hexahedral grid generation algorithm is presented for the generation of the part of grid close to the viscous walls of the domain. The algorithm is further extended with improvements meant to increase the grid quality around concave and convex ridges of the domain, where the semi-structured grids are known to be inadequate.<p><p>The combined methodology is demonstrated on a variety of complex examples mainly from the automotive and aeronautical industry. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0999 seconds