• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bifurcation in physical systems

Taverner, S. January 1986 (has links)
No description available.
2

Simulação de escoamentos viscosos utilizando mapeamentos entre equações / Viscous flow simulations using diferential equation mappings

Santiago, Gustavo Fuhr January 2007 (has links)
Este trabalho faz uma nova proposta de método para solucionar a equação advectivodifusiva tridimensional que descreve os escoamentos viscosos incompressíveis. Este método usa um esquema analítico baseado em split seguido de gênese de equações diferenciais. A solução do problema é efetuada em duas etapas distintas. A primeira etapa consiste na aplicação de um split não-homogêneo sobre as Equações de Navier-Stokes, no qual uma das equações do sistema resultante contém a derivada temporal e o termo viscoso, constituindo uma equação diferencial linear não-homogênea. A solução dessa equação é obtida via mapeamento em uma equação de primeira ordem, fornecendo o formato do campo de velocidades. A partir deste se obtém o formato da função corrente para fins de gênese. Desta forma faz-se com que simulações possam ser obtidas usando computadores portáteis e, mesmo assim, requeiram tempo de processamento pequeno para a solução de problemas ditos de engenharia. Estas vantagens podem ser diretamente traduzidas em aplicações práticas de simulação como, por exemplo, a possibilidade de tomada de decisão em tempo real sobre o controle de um processo em andamento numa planta industrial, respostas transientes num escoamento turbulento ou na previsão da dispersão de poluentes em rios e mananciais críticos à saúde da população. / This work proposes a new method to solve the three-dimensional advective-diffusive equation which describes incompressible viscous flows. The proposed solution uses an analytical method based in the split of the original equation, followed by a genesis of differential equa tions. The problem is solved in two distinct steps. The first step consists of applying a nonhomogeneous split on the Navier-Stokes equations, which results in one non-homogeneous partial differential equation containing the time derivative and the viscous term. This equation is solved by mapping it into a first order equation that provides the velocity field format. Using this result we are able to obtain the stream function format, which will be used in the following genesis. This sequence allows the use of portable computers to achieve simulation results for engineering problems in small enough processing time. These advantages can be used in applications such as real- time decision making about industrial processes variables, transient turbulent flow calculations or pollution dispersion simulations in rivers or other water sources critical to the population.
3

Simulação de escoamentos viscosos utilizando mapeamentos entre equações / Viscous flow simulations using diferential equation mappings

Santiago, Gustavo Fuhr January 2007 (has links)
Este trabalho faz uma nova proposta de método para solucionar a equação advectivodifusiva tridimensional que descreve os escoamentos viscosos incompressíveis. Este método usa um esquema analítico baseado em split seguido de gênese de equações diferenciais. A solução do problema é efetuada em duas etapas distintas. A primeira etapa consiste na aplicação de um split não-homogêneo sobre as Equações de Navier-Stokes, no qual uma das equações do sistema resultante contém a derivada temporal e o termo viscoso, constituindo uma equação diferencial linear não-homogênea. A solução dessa equação é obtida via mapeamento em uma equação de primeira ordem, fornecendo o formato do campo de velocidades. A partir deste se obtém o formato da função corrente para fins de gênese. Desta forma faz-se com que simulações possam ser obtidas usando computadores portáteis e, mesmo assim, requeiram tempo de processamento pequeno para a solução de problemas ditos de engenharia. Estas vantagens podem ser diretamente traduzidas em aplicações práticas de simulação como, por exemplo, a possibilidade de tomada de decisão em tempo real sobre o controle de um processo em andamento numa planta industrial, respostas transientes num escoamento turbulento ou na previsão da dispersão de poluentes em rios e mananciais críticos à saúde da população. / This work proposes a new method to solve the three-dimensional advective-diffusive equation which describes incompressible viscous flows. The proposed solution uses an analytical method based in the split of the original equation, followed by a genesis of differential equa tions. The problem is solved in two distinct steps. The first step consists of applying a nonhomogeneous split on the Navier-Stokes equations, which results in one non-homogeneous partial differential equation containing the time derivative and the viscous term. This equation is solved by mapping it into a first order equation that provides the velocity field format. Using this result we are able to obtain the stream function format, which will be used in the following genesis. This sequence allows the use of portable computers to achieve simulation results for engineering problems in small enough processing time. These advantages can be used in applications such as real- time decision making about industrial processes variables, transient turbulent flow calculations or pollution dispersion simulations in rivers or other water sources critical to the population.
4

Simulação de escoamentos viscosos utilizando mapeamentos entre equações / Viscous flow simulations using diferential equation mappings

Santiago, Gustavo Fuhr January 2007 (has links)
Este trabalho faz uma nova proposta de método para solucionar a equação advectivodifusiva tridimensional que descreve os escoamentos viscosos incompressíveis. Este método usa um esquema analítico baseado em split seguido de gênese de equações diferenciais. A solução do problema é efetuada em duas etapas distintas. A primeira etapa consiste na aplicação de um split não-homogêneo sobre as Equações de Navier-Stokes, no qual uma das equações do sistema resultante contém a derivada temporal e o termo viscoso, constituindo uma equação diferencial linear não-homogênea. A solução dessa equação é obtida via mapeamento em uma equação de primeira ordem, fornecendo o formato do campo de velocidades. A partir deste se obtém o formato da função corrente para fins de gênese. Desta forma faz-se com que simulações possam ser obtidas usando computadores portáteis e, mesmo assim, requeiram tempo de processamento pequeno para a solução de problemas ditos de engenharia. Estas vantagens podem ser diretamente traduzidas em aplicações práticas de simulação como, por exemplo, a possibilidade de tomada de decisão em tempo real sobre o controle de um processo em andamento numa planta industrial, respostas transientes num escoamento turbulento ou na previsão da dispersão de poluentes em rios e mananciais críticos à saúde da população. / This work proposes a new method to solve the three-dimensional advective-diffusive equation which describes incompressible viscous flows. The proposed solution uses an analytical method based in the split of the original equation, followed by a genesis of differential equa tions. The problem is solved in two distinct steps. The first step consists of applying a nonhomogeneous split on the Navier-Stokes equations, which results in one non-homogeneous partial differential equation containing the time derivative and the viscous term. This equation is solved by mapping it into a first order equation that provides the velocity field format. Using this result we are able to obtain the stream function format, which will be used in the following genesis. This sequence allows the use of portable computers to achieve simulation results for engineering problems in small enough processing time. These advantages can be used in applications such as real- time decision making about industrial processes variables, transient turbulent flow calculations or pollution dispersion simulations in rivers or other water sources critical to the population.
5

Výpočtová analýza dynamických vlastností axiálních ložisek / Computational analysis of the dynamic behavior of the thrust bearings

Žatko, Miroslav January 2010 (has links)
This master´s thesis solves the problem of stationary viscous flow of incompressible fluids in thin layers of fluid film lubrication in fixed pad thrust bearings. The parametric computational model of oil domain was created for investigation the distribution of pressure, velocity and thermal fields together with the determination of the basic parameters as axial force, heating up and friction loss. Subsequently this model was applied for investigation influence of uneven bearing clearance. The problem task was solved by final volume method in Ansys CFX 12.0 software.
6

Fluid-Elastic Interactions in Flutter And Flapping Wing Propulsion

Mysa, Ravi Chaithanya January 2013 (has links) (PDF)
This study seeks to understand the interplay of vorticity and elasto-dynamics that forms the basis for a fluttering flag and flapping wing propulsion, and factors that distinguish one from the other. The fluid dynamics is assumed two dimensional and incompressible, and comprises potential and viscous flow simulations. The elastic solid is one dimensional and governed by the Bernoulli-Euler flexure model. The fluid and elastic solid models are coupled using a predictor-corrector algorithm. Flutter of a flag or foil is associated with drag and we show that the pressure on the foil is predominantly circulatory in origin. The circulatory pressure generated on the foil depends primarily on the slope and curvature. The wake vorticity exhibits a wide range of behavior starting from a Kelvin-Helmholtz type instability to a von Kármán wake. Potential flow simulations do not capture the wake accurately both at high and low mass ratios. This is reflected in the flutter boundary and pressure over the foil when compared with viscous flow simulations. Thrust due to heaving of a flexible foil shows maxima at a set of discrete frequencies that coincide with the frequencies at which the flapping velocity of the foil tip is a maximum. The propulsive efficiency shows maxima at a set of discrete frequencies that are close but distinct from the thrust maxima set of frequencies. These discrete frequencies are close to the natural frequencies of vibration of a cantilevered foil vibrating in vacuum. At low frequencies thrust is a consequence of a strong leading edge vortex developed over the foil and it remains attached to the foil as it is convected due to the favorable pressure gradient presented by the time and spatially varying shape of the foil. At moderate and high frequencies of oscillation the pressure, and consequently the thrust, generated by the foil is non-circulatory in origin and they are high where the accelerations of the foil are high. At high frequencies the leading edge vortex is weak. Except in the low frequency range, potential flow simulations qualitatively compares well with viscous flow predictions. We show that thrust and drag on a flexible foil oscillating in a flow is caused by the phase difference between the slope of the foil and the fluid pressure on it. Propulsive efficiency though is governed by the phase difference between foil velocity and fluid pressure and inertia forces. Thus, the interplay of vorticity and elasto-dynamics determine the behavior of a flutter and propulsion of a flexible foil in a fluid flow.

Page generated in 0.0144 seconds