Spelling suggestions: "subject:"visiblelight""
41 |
Avaliação in vitro do potencial de uso da apigenina, da crisina e do beta-caroteno na proteção contra a radiação UVA e luz visível / In vitro evaluation of the potential use of apigenin, chrysin and betacarotene in protection against UVA radiation and visible lightFreitas, Juliana Vescovi de 02 September 2016 (has links)
Tendo em vista que a radiação ultravioleta A (UVA) e a luz visível (VIS) apresentam alto potencial para gerar oxigênio singleto (1O2) e provocar estresse oxidativo, é importante buscar substâncias capazes de prevenir ou minimizar o impacto desse evento sobre a pele, já que atualmente, há poucos filtros solares orgânicos no mercado que oferecem ampla proteção contra a UVA I e não há filtros orgânicos que ofereçam proteção contra a luz VIS. Estudos da literatura indicam que alguns antioxidantes, tais como a apigenina (API), a crisina (CRI) e o beta-caroteno (BTC), podem neutralizar o 1O2 e apresentam potencial de uso na fotoproteção. Deste modo, o objetivo do presente projeto foi avaliar a segurança da API, da CRI e do BTC, por meio dos ensaios de fotoestabilidade, fotorreatividade e fototoxicidade, e também sua eficácia, através de ensaios para determinar a proteção contra a morte celular induzida pela fotossensibilização da melanina, que gera 1O2, e a proteção de membrana contra danos fotooxidativos. Inicialmente, foi avaliada a fotoestabilidade da API, da CRI e do BTC quando submetidos à radiação UVA e luz VIS, por meio de CLAE. A fototoxicidade das substâncias em estudo frente à radiação UVA e luz VIS, empregando-se cultura de fibroblastos (Balb 3T3 clone A31), de melanócitos (Melan-a) e de melanoma (B16F10) também foi realizada. Para avaliar a eficácia, o efeito da API, da CRI e do BTC sobre a viabilidade das células B16F10 com níveis basais de melanina e após indução da melanogênese, bem como seu efeito sobre a proteção de membrana em modelo mimético de lipossomas, foram avaliados frente à luz VIS. Os resultados do estudo de fotoestabilidade mostraram que os antioxidantes, isolados ou em associação, foram considerados fotoestáveis em ambas as faixas de radiação avaliadas (UVA/VIS e VIS). No estudo de fotorreatividade, a API, a CRI e a associação (API+CRI+BTC) se mostraram fracamente fotorreativas após exposição ao UVA/VIS. No entanto, na presença de VIS, nenhum dos compostos apresentou fotorreatividade. No estudo de fototoxicidade, foi observado potencial fototóxico após irradiação por UVA/VIS para a CRI, BTC e a associação (API+CRI+BTC) nas três linhagens celulares avaliadas. Já a API, não apresentou potencial fototóxico apenas no ensaio realizado com fibroblastos. Na faixa da luz VIS, o BTC apresentou potencial fototóxico nas três linhagens celulares avaliadas; entretanto, para os demais antioxidantes (API e CRI) e sua associação (API+CRI+BTC) houve variação na resposta entre as diferentes linhagens. Os resultados dos estudos para avaliação da eficácia mostraram que os antioxidantes foram capazes de proteger as células contra morte induzida pela fotossensibilização da melanina, sendo que o efeito da API foi superior ao da CRI e do BTC. No estudo de proteção de membrana apenas a API foi capaz de conferir proteção contra os danos fotooxidativos induzidos pela luz VIS. A investigação do potencial de uso da API, da CRI e do BTC na proteção contra a radiação UVA e luz VIS mostrou que o uso de tais antioxidantes e da sua combinação visando a fotoproteção da pele é mais seguro na faixa da luz VIS. Além disso, concluiu-se que API é o mais promissor entre os antioxidantes estudados em relação à segurança e à eficácia, e apresenta elevado potencial de uso na proteção contra a luz VIS. / Considering that ultraviolet A (UVA) radiation and visible light (VIS) present high potential to generate singlet oxygen (1O2) and cause oxidative stress, it is important to search for substances that are able to prevent or minimize the impact of such event on the skin, since currently, there are few organic UV-filters on the market that offer broad protection against UVA I and there is no organic UV-filter which provide VIS light protection. Previous studies showed that some antioxidants, such as apigenin (API), chrysin (CRI) and beta-carotene (BTC) can neutralize 1O2 and exhibit potential for use in photoprotection. Therefore, the aim of this study was to evaluate the safety of API, CRI and BTC, by performing photostability, photoreactivity and phototoxicity assays, and also its efficacy, through the determination of the protection against cell death induced by melanin photosensitization, which generates 1O2, and also the assessment of membrane protection against photooxidative damage. Firstly, API, CRI and BTC photostability was evaluated after exposure to UVA and VIS light by using HPLC. The phototoxicity of the antioxidants subjected to UVA and VIS light, using cultured fibroblasts (Balb 3T3 clone A31), melanocytes (melan-a) and melanoma (B16F10) was also performed. In order to assess efficacy, API, CRI and BTC effect on the viability of B16F10 cells with melanin basal levels and after melanogenesis induction as well as their effect on membrane protection using mimetic liposome model were evaluated after VIS light exposure. Results of photostability studies showed that the antioxidants, isolated or combined, were considered photostable in both ranges (UVA/VIS and VIS). In the photoreactivity study API, CRI and the combination (API + CRI + BTC) were considered weakly photoreactive after UVA/VIS exposure. However, in the presence of VIS light, none of the compounds exhibited photoreactivity. In the phototoxicity study, phototoxic potential was observed for CRI, BTC and the combination (API + CRI + BTC) after UV/VIS irradiation in the three studied cell lines. API showed no phototoxic potential only in the assay performed with fibroblasts. In the VIS range, BTC showed phototoxic potential in the three cell lines; however, for the other antioxidants (API and CRI) and their combination (API + CRI + BTC) there was variance in response among different cell lines. Efficacy studies showed that the studied antioxidants were able to protect cells from death induced by melanin photosensitization, and API effect was superior to that of CRI and BTC. In membrane protection study, only API provided protection against VIS photooxidative induced damage. The investigation of the potential use of API, CRI and BTC for protection against UVA and VIS light showed that the use of such antioxidants and their combination aiming skin photoprotection is safer in the VIS range. Furthermore, it was concluded that API is the most promising antioxidant regarding safety and efficacy and presents high potential for use in protection against VIS light.
|
42 |
Enhancing communication link performance in visible light communicationLi, Yichen January 2017 (has links)
With data throughput increasing exponentially in wireless communication networks, the limited radio frequency (RF) spectrum is unable to meet the future data rate demand. As a promising complementary approach, optical wireless communication (OWC) has gained significant attention since its licence-free light spectrum provides a considerable amount of communication bandwidth. In conventional OWC systems, the information-carried signal has to be real-valued and non-negative due to the incoherent light output of the conventional optical transmitter, light emitting diode (LED). Therefore, an intensity modulation and direct detection (IM/DD) system is used for establishing the OWC link. Some modified orthogonal frequency division multiplexing (OFDM) schemes have been proposed to achieve suitable optical signals. In previous research, three OFDM-based schemes have been presented, including DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM), asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and unipolar orthogonal frequency division multiplexing (U-OFDM). Basic concepts of SPAD receivers are studied and a novel application in OWC is proposed for a permanent downhole monitoring (PDM) system in the gas and oil industry. In this thesis, a complete model of the SPAD-based OWC system is presented, including some related SPAD metrics, the photon counting process in SPAD and a specific nonlinear distortion caused by passive quenching (PQ) and active quenching (AQ) recharged circuits. Moreover, a practical SPAD-based visible light communication (VLC) system and its theoretical analysis are presented in a long-distance gas pipe with a battery-powered LED and a basic on-off keying (OOK) modulation scheme. In this thesis, two novel optical orthogonal frequency division multiplexing (O-OFDM) technologies are proposed: non-DC-biased orthogonal frequency division multiplexing (NDCOFDM) and OFDM with single-photon avalanche diode (SPAD). The former is designed for optical multiple-input multiple-output (O-MIMO) systems based on the optical spatial modulation (OSM) technique. In NDC-OFDM, signs of modulated O-OFDM symbols and absolute values of the symbols are separately transmitted by different information carrying units. This scheme can eliminate clipping distortion in DCO-OFDM and achieve high power efficiency. Furthermore, as the indices of transmitters carry extra information bits, NDC-OFDM gives a significant improvement in spectral efficiency over ACO-OFDM and U-OFDM. In this thesis, SPAD-based OFDM systems with DCO-OFDM and ACO-OFDM are presented and analysed by considering the nonlinear distortion effect of PQ SPAD and AQ SPAD. A comprehensive digital signal processing of SPAD-based OFDM is shown and theoretical functions of the photon counting distribution in PQ SPAD and AQ SPAD are given. Moreover, based on Bussgang theorem, a conventional method for analysing memoryless distortion, close-formed bit-error rate (BER) expressions of SPAD-based OFDM are derived. Furthermore, SPAD-based OFDM is compared with conventional photo-diode (PD) based OFDM systems, and a gain of 40 dB in power efficiency is observed.
|
43 |
Photocatalytic Carbon Dioxide Conversion to Fuel for Earth and MarsMeier, Anne J. 04 July 2018 (has links)
As far as we know, we only have one planet to live on, with a delicate atmospheric system providing us safety and life. Global CO2 emissions continue to plague the environment of Earth, primarily due to the processing of fossil fuels, deforestation, and industrialization. There are several avenues of pursuing CO2 reutilization, each having their own benefits and limitations. Direct and indirect thermochemical approaches of CO2 conversion boast of efficient CO2 conversion rates but have limitations associated with the use of renewable hydrogen and high temperatures of operation. The work in this dissertation investigates low temperature photocatalytic CO2 conversion, a simple principle, which provides opportunity for fuel production while harvesting solar energy. Large scale implementation of this process has been plagued by limitations such as fast electron/hole recombination rates, poor quantum efficiency, product selectivity, catalyst stability, and the band gap energy (Eg) being too large to harvest solar light. Our long term goals and applications look to utilize sustainable fuel generation in-situ on Mars for human exploration. We must use available Mars resources to generate fuel to save launch and resource costs from Earth, utilizing the Sun, Mars atmospheric CO2 (95%), and H2O that can be harvested from subsurface ice. Visible light activated catalysts are needed for applications of CO2 conversion on Earth and Mars due to the intensity and abundance of visible light available in the solar spectrums.
The dissertation presents the development of photocatalysts for CO2 reduction in the presence of H2O under visible light irradiation. Detailed chemical analysis and characterization were performed on the photocatalysts for improved understanding of material design, including optical and elemental properties, charge transport, stability, catalytic function and scalability. Induced defects and impurities were implemented to understand Eg tunability. Introducing defects through impurities reduced the electron confinement effects in some cases, increasing the photocatalytic activity.
Three material regimes were synthesized, tuned, and tested for catalytic function. The first was a series of (ZnO)1-x(AlN)x, materials that had not been synthesized previously, nor ever demonstrated in CO2 and H2O under solar irradiation. The Zn:Al materials were derived from layered double hydroxides. The second material set was (ZnO)1-x(GaN)x, also derived from layered double hydroxides. To the best of our knowledge, these Zn:Ga materials were demonstrated for the first time in CO2 reduction to CO under visible light without the use of any noble metal co-catalysts or dopants. The third set of materials were MoS2 nanoflowers synthesized via chemical vapor deposition that, to our pleasant surprise, produced thinly stacked sheets in the form of nanoflowers that contained large edge-site exposure, which was vastly different from the morphology of commercially purchased MoS2.
The preliminary results from this work have demonstrated that tunable band gap energy is achievable. The (ZnO)1-x(AlN)x Eg ranged from 2.84 to 3.25 eV. The Zn:Al solid solution materials were tuned by increasing nitridation time, and varying the cationic ratio. Increasing the cationic ratio in this study more than tripled CO production under solar light irradiation compared to lower cationic ratios. The (ZnO)1-x(GaN)x, materials had a Eg range from 2.33 eV to 2.59 eV. The Eg was also easily tunable from varying nitriding time and cationic ratio. The highest CO production rate was the Zn:Ga cationic ratio of 3:1 at 20 min of nitriding time at 100 °C, which produced 1.06 µmol-g-1-h-1. This production was higher than both of our controlled TiO2 experiments, and other reported pure TiO2 solar photoreaction experiments. The results indicate a delicate balance of nitridation and Zn:M3+ ratio should be selected, along with precursor material cation ratios in order to obtain the desired final product and crystal structure. The controlled introduction of imperfections or crystal defects through MoS2 synthesis variations also revealed the tuning ability of flake edge morphology, nanoflower diameter, stacked-sheet thickness, optical Eg and catalytic activity. The nanoflower Eg ranged from 1.38 to 1.83 eV, and the production rates of CO nearly doubled when post treating the nanoflowers in a reduction step.
These developments support tunable gas phase photocatalytic activity and can be enhanced further for further photocatalytic reactions, optoelectronics and field emitter applications. The photoreactor studies indicated that careful tuning of the parent material is imperative to understand before adding a co-catalyst or doping process, as the edge site morphology, crystal phase stability, and strain-induced defects impact the photocatalytic performance.
|
44 |
Preparação e caracterização de fotocatalisadores baseados na modificação de TiO2 e em compostos de Ag para aplicação na degradação do fenol / Preparation and characterization of TiO2-modified and Ag-based photocatalysts for phenol degradationPilonetto, Andressa 27 October 2016 (has links)
Neste trabalho é reportado o estudo de degradação do fenol via processo de fotocatálise heterogênea pelo uso de radiação eletromagnética visível em duas classes de fotocatalisadores: os baseados no TiO2 e os baseados na Ag. Os materiais baseados no TiO2 foram modificados com Ag2O e Ag3PO4 e foram preparados por meio do tratamento hidrotérmico de TiO2 comercial em meio altamente alcalino. Já os materiais baseados na Ag foram obtidos via reações de precipitação química, tendo sido preparados os seguintes compostos: Ag2O, Ag2CO3, Ag3PO4 e Ag2CrO4. A caracterização dos fotocatalisadores obtidos foi feita por meio das técnicas de microscopia eletrônica de varredura (MEV), difração de raios −X, DRX, fisissorção de N2, espectroscopias no ultravioleta − visível por refletância difusa, UV-Vis e no infravermelho, IV. Os resultados mostraram a obtenção de estruturas com morfologia associada a fios de TiO2 anatase modificados superficialmente com partículas esféricas de Ag2O e Ag3PO4, com elevado grau de cristalinidade e pureza de fase. O estudo fotocatalítico revelou que os materiais modificados com Ag2O e Ag3PO4 apresentaram melhor desempenho na fotodegradação do fenol em comparação com TiO2 puro, com eficiência de 60% de degradação em 5 horas de irradiação de fótons na região do visível. Em relação aos fotocatalisadores a base de Ag, foram obtidas partículas com boa distribuição de tamanho e morfologias associadas a cristais octaédricos de Ag2O, bastões de Ag2CO3, poliedros de Ag3PO4, bem como partículas multifacetas de Ag2CrO4. Os resultados indicaram que estes fotocatalisadores apresentaram elevada eficiência na fotodecomposição do fenol. Dentre eles, o Ag2O e o Ag3PO4 foram mais efetivos na remoção do poluente, com eficiência de 90% em apenas 2 horas de tratamento. Adicionalmente, avaliou-se a formação de radicais hidroxila durante a reação de oxidação, por meio da técnica da fotoluminescência utilizando a cumarina (COU) como uma molécula sonda. Como resultado foi observado que, com exceção do TiO2 puro,não houve formação da 7-hidroxicumarina (7HC) como produto fluorescente da reação da cumarina com os radicais •OH. Além disso, estes fotocatalisadores foram avaliados em relação à estabilidade e desempenho catalítico no reuso. A análise dos resultados obtidos por DRX e MEV dos fotocatalisadores após o uso em estudo fotocatalítico de degradação mostrou que houve a formação de prata metálica na estrutura dos mesmos. No entanto, os fotocatalisadores Ag2O e Ag2CO3 revelaram um aumento na atividade fotocatalítica após o reciclo catalítico, sugerindo que a modificação da estrutura contribuiu positivamente na eficiência da degradação do fenol. / In this, work it is reported the study of phenol degradation by heterogeneous photocatalysis process using TiO2-based and Ag-based photocatalysts materials, irradiated by visible light. TiO2-based catalysts were modified with Ag2O and Ag3PO4 and prepared by the alkaline hydrothermal treatment of commercial TiO2, while the Ag-based materials were obtained by chemical precipitation. It was prepared the following compounds: Ag2O, Ag2CO3</sub, Ag3PO4 and Ag2CrO4. Photocatalysts characterization was made by microscopy electron scanning (SEM), x ray diffraction (XRD), physisorption N2 method, UV-Vis diffuse reflectance spectroscopy and infrared spectroscopy (FT-IR). Anatase TiO2 materials showed wire-like morphology superficially modified with spherical particles of Ag2O or Ag3PO4, with high crystallinity and phase purity. The photocatalytic study found that the materials modified by Ag2O and Ag3PO4 showed better performance in phenol photodegradation than pure TiO2, with a degradation of 60% after 5 hours of irradiation by visible light. On the other hand, Ag-based catalysts exhibited particles with morphology associated to: Ag2O octahedrons crystals, Ag2CO3</sub rods, Ag3PO4 polyhedrons, and Ag2CrO4 multifaceted particles. Ag-based photocatalysts showed high efficiency in the phenol photocatalytic degradation by visible light. Among them, Ag2O and Ag3PO4 were the most effective, with 90% of pollutant degradation after only 2 hours of treatment. Moreover, the hydroxyl radicals production/role during the oxidative process was investigated by the photoluminescence technique (PL) using coumarin (COU) as a probe molecule. It was found that there was no formation of 7-hydroxycoumarin (7HC) as fluorescent product of the reaction of COU with radicals •OH, except using pure TiO2. Furthermore, the stability and catalytic performance during the reuse of these photocatalysts were evaluated. XRD and SEM analysis after catalyst use in the phenol photodegradation showed that metallic silver formation at their structures surface. Ag2O and Ag2CO3 photocatalysts showed an increase in photocatalytic activity after therecycle, suggesting that the structure modifications could contribute positively for phenol photodegradation efficiency.
|
45 |
Development of the Visible Light Photon Counter for Applications in Quantum Information ScienceMcKay, Kyle January 2011 (has links)
<p>The visible light photon counter (VLPC) is a high quantum efficiency (QE), Si-based, single-photon detector with high gain, low-noise multiplication, low timing jitter, and photon number resolution. While the VLPC has high QE in the visible wavelengths, the QE in the ultraviolet and infrared is low due to minimal absorption within the active layers of the device. In the ultraviolet, the absorption coefficient of Si is high and most of the incident photons are absorbed within the top contact of the device, whereas, in the infrared, Si is practically transparent. A number of applications in quantum information science would benefit from use of the VLPC if the QE was improved in the ultraviolet (e.g., state detection of trapped ions) and the infrared (e.g., long-distance quantum cryptography). This thesis describes the development of the ultraviolet photon counter (UVPC) and the infrared photon counter (IRPC), which are modified versions of the VLPC with increased QE in the ultraviolet and infrared wavelengths, respectively. The UVPC has a transparent metal Schottky contact to reduce absorption within the top contact of the VLPC, resulting in an increase in the QE in the ultraviolet by several orders of magnitude. The IRPC is a proposed device that has an InGaAs absorption layer that is wafer-fusion bonded to the VLPC. The band alignment of the resulting InGaAs/Si heterojunction is measured and shows a large discontinuity in the valence band that impedes carrier transport at the interface. A ultra-high vacuum wafer-bonding system was developed to understand the impact of the surface chemistry of the bonded wafers on the band alignment of the InGaAs/Si heterojunction of the IRPC.</p> / Dissertation
|
46 |
A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant ConverterZhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
|
47 |
A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant ConverterZhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
|
48 |
Characterizing Water as Gap Fill for Double Glazing UnitsAdu, Bright 01 May 2015 (has links)
The use of sunlight has always been a major goal in the design and operation of commercial buildings to minimize electrical consumption of artificial lighting systems. Glazing systems designed to allow optimal visible light transmission also allow significant unwanted direct solar heat gain caused by infrared light. Conversely, glazing systems that are designed to reflect unwanted direct solar heat gain significantly reduce the transmittance of visible light through windows. The goal of this research was to characterize the performance of water as gap-fill for double-glazing units in eliminating the compromises that exist in current glazing systems with respect to light and heat transmittance. An in situ test approach and computer simulations were conducted to measure the performance of water-filled glazing units against air-filled glazing units. The thermal transmittance and solar heat gain coefficient values obtained from both the field experiments and computer simulations, glazing units with air-fill proved better than the glazing units with non-flowing water-fill. However, the high convective coefficient and the high thermal mass of the water can be used to its advantage when it is allowed to flow at peak temperatures, thus, maintaining lower temperature swings indoor. This can lead to a reduction of about 50-70% direct solar heat and still maintain high visibility.
|
49 |
Synthesis and Evaluation of Photocatalytic Properties of BiOBr for Wastewater Treatment ApplicationsAhmad, Ayla 05 December 2013 (has links)
Visible light-driven photocatalysis has shown considerable potential in the area of clean and renewable energy, as well as in wastewater treatment. This thesis describes the synthesis, characterization and applicability of a visible-light active photocatalyst, bismuth oxybromide (BiOBr). The photocatalytic activity of BiOBr was investigated through its preparation via hydrothermal and solvothermal synthesis routes under various conditions. Hydrothermal catalyst was prepared using non template based method while for solvothermal synthesis CTAB was used as a template. Parameters of temperature and time of thermal treatment were optimized for each synthesis method and overall tests for catalyst dosage and recyclability were performed. An overall optimal route leading to high photocatalytic performance was also proposed based on the obtained results. Studies were also conducted to examine the applicability of optimally synthesized BiOBr in drinking water applications by studying catalyst-mediated disinfection of E. coli and degradation of phenol. Favourable results were obtained, confirming the prospective application of BiOBr as a viable photocatalyst for disinfection. Furthermore, the potential of enhancing BiOBr to further improve its performance is described through synthesis of a novel PdCl2/BiOBr based photocatalyst. Overall, the performance of BiOBr under various conditions in this study establishes its potential as a holistic photocatalyst and merits further development.
|
50 |
Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and DisinfectionGamage McEvoy, Joanne 14 May 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
|
Page generated in 0.0252 seconds