• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual Form and a Typology of Purpose: A Peircean-Based Approach to Visual Information Design Pedagogy

Rosenquist, Christina Laraine Perkins 12 June 2012 (has links) (PDF)
Visual information design is a vital part of modern communication. Currently discussion is occurring in most disciplines to determine more effective ways to incorporate visual information design into all their communication, including website and document design. These discussions typically focus on elements of traditional graphic design that tell the student what is "good" graphic design; however, traditional graphic design depends on trial and error, luck, and best practices, with only rare attempts to construct general principles. Selection of visual elements is usually based on designer preference rather than any consistent conceptual framework or empirical support for design decisions. Another approach to visual information design was introduced by Alan Manning and Nicole Amare, based on the work of C. S. Peirce, who created a number of three-part typologies aimed particularly at modes of communication in relation to purpose. Manning and Amare's approach to visual information design maps specific visual elements to consistent definitions based on both formal characteristics and useful functions, as predicted by analysis in terms of primary Peircean categories. These definitions provide a consistent framework for selecting the appropriate visual elements that have the desired communicative effects. Manning and Amare's work was written for an academic audience. The primary purpose of my Master's project is to adapt their information-design concepts for a more general audience, particularly students. An abbreviated and simplified version was created online and was pilot-tested in two undergraduate Linguistics classes for students who are pursuing an editing minor.
2

Perceptual-cognitive Properties of Pictures, Diagrams, and Sentences: Toward a Science of Visual Information Design

Coppin, Peter 27 March 2014 (has links)
Right now you are reading a sentence. Earlier, you might have been looking at a realistic picture, such as a photograph, or an outline drawing in a set of instructions. If you are a programmer, you work with sentence-like structures, such as code, or a system diagram. These are all graphic representations. To varying degrees, the effectiveness of every graphic representation relies on its ability to convey the designer’s intended meaning and elicit the intended reaction from its audience. However, the design of graphic representations, even in technical domains such as visual programming language design or interactive information visualization, currently relies heavily on general principles based solely on practice, intuition, and informal measures of effectiveness from the applied art and craft of design (as opposed to scientific analysis or theory). There is an increasing demand for a scientific understanding of design and its evaluation from stakeholders (who seek evidence for effectiveness) and designers (who seek to advance their field). Because both the creation of graphic displays and their perception are literally embodied experiences, a model was developed with an embodiment orientation, specifically based on how graphics are perceptually and cognitively processed. In my research, I found that graphic representations are constituted of two properties, pictorial and symbolic information, that emerge through two interrelated aspects of perception. In sighted individuals, for example, every graphic representation makes use of biological capabilities to process visual sensation (i.e., light hitting the retina), which are processed in relation to culturally-learned capabilities (i.e., writing). I observed how graphic representations – such as pictures, diagrams, and sentences – are “naturally selected” (i.e., during different phases of design or problem solving). From these observations, I developed a model that distinguishes and predicts the effectiveness of pictures, diagrams, and sentences, in terms of how object relations and attributes are pictorially or symbolically represented, relative to the functional roles of those representations, contexts, and in some cases, individual perceptual-cognitive differences among perceivers. This model is a step toward a science of graphics that could lead to evaluation techniques for information systems, theories for inclusive design, and ergonomically designed software programming tools.
3

Perceptual-cognitive Properties of Pictures, Diagrams, and Sentences: Toward a Science of Visual Information Design

Coppin, Peter 27 March 2014 (has links)
Right now you are reading a sentence. Earlier, you might have been looking at a realistic picture, such as a photograph, or an outline drawing in a set of instructions. If you are a programmer, you work with sentence-like structures, such as code, or a system diagram. These are all graphic representations. To varying degrees, the effectiveness of every graphic representation relies on its ability to convey the designer’s intended meaning and elicit the intended reaction from its audience. However, the design of graphic representations, even in technical domains such as visual programming language design or interactive information visualization, currently relies heavily on general principles based solely on practice, intuition, and informal measures of effectiveness from the applied art and craft of design (as opposed to scientific analysis or theory). There is an increasing demand for a scientific understanding of design and its evaluation from stakeholders (who seek evidence for effectiveness) and designers (who seek to advance their field). Because both the creation of graphic displays and their perception are literally embodied experiences, a model was developed with an embodiment orientation, specifically based on how graphics are perceptually and cognitively processed. In my research, I found that graphic representations are constituted of two properties, pictorial and symbolic information, that emerge through two interrelated aspects of perception. In sighted individuals, for example, every graphic representation makes use of biological capabilities to process visual sensation (i.e., light hitting the retina), which are processed in relation to culturally-learned capabilities (i.e., writing). I observed how graphic representations – such as pictures, diagrams, and sentences – are “naturally selected” (i.e., during different phases of design or problem solving). From these observations, I developed a model that distinguishes and predicts the effectiveness of pictures, diagrams, and sentences, in terms of how object relations and attributes are pictorially or symbolically represented, relative to the functional roles of those representations, contexts, and in some cases, individual perceptual-cognitive differences among perceivers. This model is a step toward a science of graphics that could lead to evaluation techniques for information systems, theories for inclusive design, and ergonomically designed software programming tools.

Page generated in 0.1395 seconds