• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • Tagged with
  • 24
  • 18
  • 14
  • 14
  • 14
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Implementation of a Command-Line Interface for the VizzAnalyzer

Rohde, Daniel January 2008 (has links)
This thesis describes the new development of a command-line interface. The background of this assignment is a concept, which was developed at the University of Växjö, Sweden and is concerned with the quality analysis of software products. Out of this research an application was created. This application gives a developer the possibility to analyze the quality of his software products. This application is called VizzAnalyzer™ and is distributed by the company Arisa AB. The VizzAnalyzer™ is already available in various versions and the command-line interface enables the possibility to analyze software in a server environment. The interface requires the possibility to analyze and interpret any user input. The thesis concerned with various concepts and ways of implementation.
12

UML 2.0 with VizzAnalyzer

Modesto, Francisco January 2007 (has links)
<p>Analyzing software contains two different tasks. First of all we are analyzing the software and try to calculate some metrics for software quality. Then those results have to be presented to the software engineers. VizzAnalyzer is a tool for analysis and visualization of software. It visualization allow not for a standardized diagram representation. Therefore it is difficult for others to understand, and we need to explain the meaning of our non-standard diagram elements. The solution is to use a standardized representation which can be understood by both sides. UML is such a collection of intuitively diagrams with standardized elements. Their meaning is clear to most software engineers.</p><p>We extended our analysis tool, the VizzAnalyzer, allowing it to view software systems as UML Class diagrams. We reused the existing plug-in architecture to connect our analysis tool with yEd, a graph visualization program. This plug-in is responsible for exchanging the data between the two applications.</p><p>We solve this conversion defining an UML Class Diagram Model and the mapping function between this model and the Common Meta-Model used by VizzAnalyzer and our Class Diagram Model. After that, we export this Class Diagram Model to a format suitable for yEd to display.</p><p>Now we can generate Class Diagrams with the VizzAnalyzer tool. This will allow a better communication of the results derived by different analysis with the software engineers.</p><p>This thesis describes the evolution of different alternatives and the design and implementation of our solution.</p>
13

Development and Implementation of an Algorithm for the Automatic Computation of Layouts for UML2.0 Class Diagrams

Schrepfer, Matthias January 2008 (has links)
<p>Reverse Engineering of software is a complex task. It is supported by various analyses and the computation of certain software quality metrics. To get an overview of the structure of the analysed software it is often necessary to visualize the relations between different components of software.</p><p>The VizzAnalyzer tool was developed for these purposes and allows visualizing the internal structure of software systems as UML2.0 class diagrams. The existing Eclipse-based visualization plug-in does not allow to automatically lay out the computed graph. Applying the layout manually is not feasible for larger graphs. A proper layout is needed to understand the provided information intuitively and the usefulness of the visualization is, on top of that, strongly connected to its layout.</p><p>In this thesis, we first state requirements for the development and implementation process of a suitable layout algorithm. We further describe the development, design, and implementation of the Sugiyama layout algorithm into the existing Eclipse-based visualization plug-in. We add these new functionalities to be able to automatically compute a layout for given UML2.0 class diagrams achieving a proper Sugiyama layout for this type of diagrams.</p><p>At the end of this thesis, we compare the results achieved by the implemented algorithm with the results achieved by yEd given the same diagrams as input.</p>
14

Development of a GXL-GRAIL Serializer/Deserializer

Lindemann, Markus January 2008 (has links)
<p>GRAIL is a Java library for capturing and manipulating graphs. It is used in the VizzAnalyzer reengineering tool developed at Växjö University that allows quality analysis of software systems.</p><p>GXL is a standard exchange format for software data in graph structure, mainly used within the field of software reengineering that is widely supported in other tools within the same field. It is important for VizzAnalyzer to support GXL as an exchange format to allow collaboration with other tools on this basis.</p><p>As the goal of this thesis, a GXL graph serializer/deserialize architecture for GRAIL has been developed that allows data exchange between VizzAnalyzer and other tools that support the GXL format.</p><p>VizzAnalyzer is capable of analyzing large software systems and therefore the task required special attention on high performance and low memory footprint even with large GXL graph structures.</p>
15

Implementation of a Recoder Front-End

Song, Yuanjun January 2009 (has links)
<p>VizzAnalyzer is a program analysis tool that can be used for analyzing software programs. It relies on so called Front-Ends for information extraction from various sources like C or Java source code. It allows analyzing different source code by mapping the language specific front-end meta-model onto a common meta-model, on which analysis are defined. Right now we use the Eclipse Parser for parsing Java source code. This requires an Eclipse installation involving a large number of dependencies in order to work with Java source code. Yet, this is not always feasible; we want to be independent from Eclipse using an alternative parser.</p><p>Recoder is a Java meta-programming application program interface (API) that can be used to write Java programs that manipulate and analyze other Java programs. The Recoder framework provides over an application programming interface detailed access to the source code in form of an abstract syntax tree (AST). It has a small footprint and no external dependencies.</p><p>We create the Recoder Front-End as alternative to the existing Eclipse front-end. This includes the definition of a mapping between Recoder Front-End Meta-Model to Common Meta-Model. The mapping result will be used by VizzAnalyzer to do further analysis work. This Bachelor thesis documents relevant theory regarding Recoder Front-End and discusses its development and implementation.</p>
16

Development of a Java Bytecode Front-End

Modesto, Francisco January 2009 (has links)
<p>The VizzAnalyzer is a powerful software analysis tool. It is able to extract information from various software representations like source code  but also other specifications like UML. The extracted information is input to static analysis of these software projects. One programming language the VizzAnalyzer can extract information from is Java source code.</p><p>Analyzing the source code is sufficient for most of the analysis. But, sometimes it is necessary to analyze compiled classes either because the program is only available in byte-code, or the scope of analysis includes libraries that exist usually in binary form. Thus, being able to extract information from Java byte-code is paramount for the extension of some analyses, e.g., studying the dependecy structure of a project and the libraries it uses.</p><p>Currently, the VizzAnalyzer does not feature information extraction from Java byte-code. To allow, e.g., the analysis of the project dependency structure, we extend the VizzAnalyzer tool with a bytecode front-end that will allow the extraction of information from Java bytecode.</p><p>This thesis describes the design and implementation of the bytecode front-end. After we implemented and integrated the new front-end with the VizzAnalyzer, we are now able to perform new analyses that work on data extracted from both, source- and bytecode.</p>
17

Facilitating comprehension of Swift programs

Chernenko, Andrii January 2018 (has links)
Program comprehension is the process of gaining knowledge about software system by extracting it from its source code or observing its behavior at runtime. Often, when documentation is unavailable or missing, this is the only reliable source of knowledge about the system, and the fact that up to 50% of total maintenance effort is spent understanding the system makes it even more important. The source code of large software systems contains thousands, sometimes millions of lines of code, motivating the need for automation, which can be achieved with the help of program comprehension tools. This makes comprehension tools an essential factor in the adoption of new programming languages. This work proposes a way to fill this gap in the ecosystem of Swift, a new, innovative programming language aiming to cover a wide range of applications while being safe, expressive, and performant. The proposed solution is to bridge the gap between Swift and VizzAnalyzer, a program analysis framework featuring a range of analyses and visualizations, as well as modular architecture which makes adding new analyses and visualizations easier. The idea is to define a formal model for representing Swift programs and mapping it to the common program model used by VizzAnalyzer as the basis for analyses and visualizations. In addition to that, this paper discusses the differences between Swift and programming languages which are already supported by VizzAnalyzer, as well as practical aspects of extracting the models of Swift programs from their source code.
18

Development of a GXL-GRAIL Serializer/Deserializer

Lindemann, Markus January 2008 (has links)
GRAIL is a Java library for capturing and manipulating graphs. It is used in the VizzAnalyzer reengineering tool developed at Växjö University that allows quality analysis of software systems. GXL is a standard exchange format for software data in graph structure, mainly used within the field of software reengineering that is widely supported in other tools within the same field. It is important for VizzAnalyzer to support GXL as an exchange format to allow collaboration with other tools on this basis. As the goal of this thesis, a GXL graph serializer/deserialize architecture for GRAIL has been developed that allows data exchange between VizzAnalyzer and other tools that support the GXL format. VizzAnalyzer is capable of analyzing large software systems and therefore the task required special attention on high performance and low memory footprint even with large GXL graph structures.
19

Retrieval and Analysis of Software Systems from SCM Repositories

Müller, Michael January 2007 (has links)
One source of input data for software evolution research is data stored inside a software configuration management repository. The data includes different versions of a software system’s source code as well as version history metadata, such as check-in dates or log messages. Inherently, extracting this data manually is a time- and labor intensive task. The subsequent preprocessing step and the appropriate storage of the results, necessary to utilize the data for further analysis, is an additional effort for the researcher. The goal of this thesis is to design and implement a front-end plug-in for an existing software comprehension tool, the VizzAnalyzer, providing the capability to extract and analyze multiple versions and evolutional information of software systems from SCM repositories and to store the results. Thereby, the implemented solution provides the infrastructure for software evolution research.
20

UML 2.0 with VizzAnalyzer

Modesto, Francisco January 2007 (has links)
Analyzing software contains two different tasks. First of all we are analyzing the software and try to calculate some metrics for software quality. Then those results have to be presented to the software engineers. VizzAnalyzer is a tool for analysis and visualization of software. It visualization allow not for a standardized diagram representation. Therefore it is difficult for others to understand, and we need to explain the meaning of our non-standard diagram elements. The solution is to use a standardized representation which can be understood by both sides. UML is such a collection of intuitively diagrams with standardized elements. Their meaning is clear to most software engineers. We extended our analysis tool, the VizzAnalyzer, allowing it to view software systems as UML Class diagrams. We reused the existing plug-in architecture to connect our analysis tool with yEd, a graph visualization program. This plug-in is responsible for exchanging the data between the two applications. We solve this conversion defining an UML Class Diagram Model and the mapping function between this model and the Common Meta-Model used by VizzAnalyzer and our Class Diagram Model. After that, we export this Class Diagram Model to a format suitable for yEd to display. Now we can generate Class Diagrams with the VizzAnalyzer tool. This will allow a better communication of the results derived by different analysis with the software engineers. This thesis describes the evolution of different alternatives and the design and implementation of our solution.

Page generated in 0.044 seconds