• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of Void Nucleation in Single-Phase Copper Polycrystals

Lieberman, Evan 01 August 2016 (has links)
A systematic investigation is presented into the microstructural and micromechanical influences on ductile damage nucleation with an emphasis on grain boundaries in polycrystals. Microstructures obtained from experiments on copper polycrystals are characterized using Electron Backscatter Diffraction (EBSD) and near-field High-Energy Diffraction Microscopy (nf-HEDM) and the occurrence of damage is compared with micromechanical values obtained using an elasto-viscoplastic model based on the Fast- Fourier Transform (EVPFFT). The model produces full-field solutions for the stress and strain in voxelized polycrystalline microstructures. In order to resolve the fields onto interfaces, local Cartesian moments of the polycrystalline grain structure are used to extract the normals of grain boundaries and the tangents of triple junctions directly from the voxelized microstructure. Thus projecting the stress yields a parameter with potential significance, i.e. the grain boundary surface tractions. We identify “traction hotspots”, i.e. regions with tractions that are significantly above the mean, for the case of uniaxial tension. These show correlations with the angle between the grain boundary normal and the loading axis, a trend that some experiments also show when boundaries that nucleated voids are analyzed using EBSD, though differences present between the simulation and experiment hint that further criteria are needed. Nf-HEDM was used to record microstructure images of a polycrystalline sample before and after it undergoes damage. The damage locations in the post-shocked image are mapped onto the pre-shocked image, allowing stress and strain values from the EVPFFT model in the regions that eventually nucleated damage to be correlated with the locations of the void. The unexpected result was that differences in plastic work across boundaries correlated with voids, whereas vi quantities such as triaxiality and normal forces across boundaries did not.
2

Multiscale Modeling of Hydrogen-Enhanced Void Nucleation

Chandler, Mei Qiang 05 May 2007 (has links)
Many experiments demonstrate that the effects of hydrogen solutes decrease macroscopic fracture stresses and strains in ductile materials. Hydrogen-related failures have occurred in nearly all industries involving hydrogen-producing environments. The financial losses incurred from those failures reaches millions if not billions of dollars annually. With the ever-urgent needs for alternative energy sources, there is a strong push for a hydrogen economy from government and private sectors. Safe storage and transportation of hydrogen increases the momentum for studying hydrogen-related failures, especially in ductile materials. To quantify ductile material damage with the effects of hydrogen embrittlement, it is necessary to add hydrogen effects into the void nucleation, void growth, and void coalescence equations. In this research, hydrogen-enhanced void nucleation is our focus, with hydrogen-enhanced void growth and void coalescence t be studied in the future. Molecular Dynamic (MD) and Monte Carlo (MC) simulations with Embedded Atom Method (EAM) potentials were performed to study how hydrogen affects dislocation nucleation, dislocation structure formation and nanovoid nucleation at nickel grain boundaries. The results were inserted into the continuum void nucleation model by Horstemeyer and Gokhale, and the relationships between stress triaxiality-driven void nucleation, grain boundary hydrogen concentrations and local grain geometries were extracted. MD and MC simulations with EAM potentials were also performed to study how hydrogen interstitials affect the dislocation nucleation, dislocation structure formation and subsequent anovoid nucleation of single crystal nickel in different hydrogen-charging conditions. Evolutions of dislocation structures of nickel single crystal with different hydrogen concentrations were compared. The effects of nanovoid nucleation stress and strain at different hydrogen concentrations were quantified. The results were also inserted into the Horstemeyer and Gokhale model and the relationship between stress triaxiality-driven void nucleation and hydrogen concentration caused by stress gradient, which showed similar trends as the grain boundary studies. From nanoscale studies and existing experimental observations, a continuum void nucleation model with hydrogen effects was proposed and used in a continuum damage model based upon Bammann and coworkers. The damage model was implemented into user material code in FEA code ABAQUS. Finite element analyses were performed and the results were compared to the experimental data by Kwon and Asaro.
3

Rate-Dependent Homogenization based Continuum Plasticity Damage Model for Dendritic Cast Aluminum Alloys

Dondeti, Piyush Prashant 08 September 2011 (has links)
No description available.
4

Physically Motivated Internal State Variable Form Of A Higher Order Damage Model For Engineering Materials With Uncertainty

Solanki, Kiran N 13 December 2008 (has links)
any experiments demonstrate that isotropic ductile materials used in engineering applications develop anisotropic damage and shows significant variation in elongation to failure. This anisotropic damage is manifest by material microstructural heterogeneities and morphological changes during deformation. The variation in elongation to the failure could be attributed to the uncertainties in the material microstructure and loading conditions. To study this deformation induced anisotropy arising from the initial material heterogeneities, we first performed uncertainty analysis using current form on an internal state variable plasticity and isotropic damage model (Bammann, 1984; Horstemeyer, 2001) to quantify the effect due to variations in material microstructure and loading conditions on elongation to failure. We extend the current isotropic damage form of theory into an anisotropic damage form for ductile material in which material heterogeneities are introduced based on damage distribution functions converted into a damage tensor of second rank. The outcome of this research is a physically motivated, uncertainty-based, anisotropic damage constitutive model that links microstructural features to mechanical properties. This was accomplished by pursuing three sub goals: (1) develop and quantify uncertainty related to material heterogeneities, (2) develop a methodology related to a higher order tensorial rank of damage for void nucleation and void growth, and (3) integrate thermodynamically constrained damage with a rate dependent plasticity constitutive material model. Later, we also proposed a new ISV theory that physically and strongly couples deformation due to damage-related internal defects to metal plasticity.
5

Ductile damage characterization in Dual-Phase steels using X-ray tomography / Caractérisation de l'endommagement dans les aciers Dual-Phase à l'aide de la tomographie aux rayons X

Landron, Caroline 21 December 2011 (has links)
Dans le cadre du développement de nuances d’aciers toujours plus performantes en termes de résistance à l’effort et à l’endommagement, les aciers Dual-Phase (DP) présentent un bon compromis résistance/ductilité. Cependant, il est nécessaire de disposer de meilleures connaissances concernant les mécanismes menant à la rupture de tels aciers. Les mécanismes d’endommagement ont ainsi été étudiés dans cette thèse à l’aide de la tomographie aux rayons X. Des essais de traction in-situ ont été réalisés sur plusieurs nuances d’aciers DP, un acier ferritique et un acier martensitique afin de caractériser chaque étape de l’endommagement ductile. Des observations qualitatives et des données quantitatives concernant la germination de l’endommagement, la croissance des cavités et la coalescence ont été recueillies lors de ces essais. Ces données quantitatives ont ensuite été utilisées pour le développement et/ou la validation de modèles d’endommagement. Une prédiction de la cinétique de germination a ainsi été proposée et la version du modèle de croissance de cavités de Rice et Tracey corrigée par Huang et prenant mieux en compte l’effet de la triaxialité a été validée expérimentalement. L’étape de coalescence des cavités menant à la rupture des matériaux a pour la première fois été caractérisée de façon quantitative dans un matériau industriel et des critères de coalescence ont été appliqués localement sur les couples de cavités présentes dans le matériau. L’utilisation de ces modèles analytiques a permis une meilleure compréhension des propriétés agissant sur les phénomènes mis en jeu. L’effet de la part cinématique de l’écrouissage sur la germination et la croissance de l’endommagement a notamment été souligné et validé par des essais de chargements complexes. / As part of the current context of requiring ever more efficient grades of steels in terms of resistance to stress and to damage, the Dual-Phase steels (DP) present an acceptable strength/ductility compromise. It is nevertheless necessary to have a better understanding of the mechanisms leading to the fracture of such steels. Damage mechanisms were studied in this PhD using X-ray tomography. In-situ tensile tests were carried out on several grades of DP steel, a ferritic steel and a martensitic steel in order to characterize each step of ductile damage. Qualitative observations and quantitative data on the nucleation of damage, the void growth and the coalescence of cavities were collected during these tests. This quantitative data was then used for the development and/or the validation of damage models. A prediction of the kinetic of nucleation was proposed and the Huang’s correction of the void growth model of Rice and Tracey accounting for the triaxiality was experimentally validated. For the first time, the step of void coalescence leading to fracture of materials was quantitatively characterized in an industrial material and coalescence criteria were locally applied on couples of neighboring cavities present in the studied specimen. The use of analytical models enabled a better understanding of the properties influencing the studied damage phenomena. The effect of the kinematic part of the strain hardening on void nucleation and void growth was notably emphasized and validated by performing complex loading tests.
6

Numerical Simulations Of Void Growth In Ductile Single Crystals

Thakare, Amol G 01 1900 (has links)
The failure mechanism in ductile materials involves void nucleation, their growth and subsequent coalescence to form the fracture surface. The voids are generated due to fracture or debonding of second phase particles or at slip band intersections. The triaxial stress field prevailing around a crack tip and in the necking region strongly influences the growth of these voids. In the initial stages of deformation, these microscale voids are often sufficiently small so that they exist entirely within a single grain of a polycrystalline material. Further, single crystals are used in high technology applications like turbine blades. This motivates the need to study void growth in a single crystal while investigating ductile fracture. Thus, the objectives of this work are to analyze the interaction between a notch tip and void as well as the growth and coalescence of a periodic array of voids under different states of stress in ductile FCC single crystals. First, the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals is studied. To this end, 2D plane strain finite element simulations are carried out under mode I, small scale yielding conditions, neglecting elastic anisotropy. In most of these computations, the orientation of the FCC single crystal is chosen so that notch lies in the (010) plane, with notch front along the [101] direction and potential crack growth along [101]. This orientation has been frequently observed in experimental studies on fracture of FCC single crystals. Three equivalent slip systems are considered which are deduced by combining three pairs of 3D conjugate slip systems producing only in-plane deformation. Attention is focused on the effects of crystal hardening, ratio of void diameter to spacing from the notch on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between slip shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. However, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. In order to examine the effect of crystal orientation, computations are performed with an orientation wherein the three effective slip systems are rotated about the normal to the plane of deformation. A strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Further, in order to study the synergistic, cooperative growth of multiple voids ahead of the notchtip, an analysis is performed by considering a series of voids located ahead of the tip. It is found that enhanced void growth occurs at higher load levels as compared to the single void model. Next, the growth and coalescence of a periodic array of cylindrical voids in a FCC single crystal is analyzed under different stress states by employing a 2D plane strain, unit cell approach. The orientation of the crystal studied here considers [101] and [010] crystal directions along the minor and major principal stress directions, respectively. Three equivalent slip systems, similar to those in the notch and void simulations are taken into account. Fringe contours of plastic slip and evolution of macroscopic hydrostatic stress and void volume fraction are examined. A criterion for unstable void growth which leads to onset of void coalescence is established. The effects of various stress triaxialities, initial void volume fraction and hardening on void growth and coalescence is assessed. It is observed that plastic slip activity around the void intensifies with increase in stress triaxiality. The macroscopic hydrostatic stress increases with deformation, reaches a peak value and subsequently decreases rapidly. An increase in stress triaxiality enhances the macroscopic hydrostatic stress sustained by the unit cell and promotes void coalescence. The stress triaxiality also has a profound effect on the shape of the void profile. The values of critical void volume fraction and critical strain, which mark onset of void coalescence, decrease within crease in stress triaxiality. However, the onset of void coalescence is delayed by increase in hardening and decrease initial void volume fraction.

Page generated in 0.1019 seconds