Spelling suggestions: "subject:"volatile folids"" "subject:"volatile molids""
1 |
Performance and Mechanisms of Excess Sludge Reduction in the Cannibal™ ProcessChon, Dong Hyun 08 April 2005 (has links)
In order to study the performance and mechanisms of excess sludge reduction in the activated sludge that incorporates the Cannibal™ Process, laboratory activated sludge systems incorporating an anaerobic bioreactor into the sludge recycle stream were operated. In this study, the solids production in the Cannibal system was about 35-40% of the conventional system under steady state conditions. The reduction in waste sludge was optimized when the interchange rate, (the ratio of sludge fed from the activated sludge system to the bioreactor compared to the total mass in the activated sludge system) was set at about 10%. It was found that the release of protein from the anaerobic bioreactor was greater than that from the aerobic bioreactor. The SOUR data suggested that the released protein from the anaerobic bioreactor was easily degraded when the sludge was returned to the activated sludge system. It was also found that when the proportion of sludge added to the anaerobic bioreactor in batch tests was approximately 10%, the protein release was about 30 mg/L. When the proportion of sludge added was increased to 26 to 41%, the release was reduced to 10 and 6 mg/L, respectively. Within 30 hours, the protein release was complete. This suggests that there is an optimum or maximum amount of recycle or interchange (~10%) for the process to function best. / Master of Science
|
2 |
Evaluation of Harvesting, Densification, and Storage Practices of Corn Stover for Bioenergy Feedstock ProductionBillman, Ryan January 2014 (has links)
No description available.
|
3 |
Cations and activated sludge floc structurePark, Chul 01 August 2002 (has links)
This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high influent sodium but had low iron and aluminum in floc. However, sludges from plants with high sodium and high iron and aluminum dewatered well and produced high quality effluents, suggesting that iron and aluminum have significant positive effects on floc properties. Following anaerobic digestion, a significant increase in solution protein occurred and correlations between solution protein, ammonium production, percentile volatile solids reduction and iron in floc were obtained. These data indicate that iron-linked protein is released to solution when iron is reduced and its degradation is responsible for volatile solids reduction in anaerobic digestion. In aerobic digestion, polysaccharide in solution increased along with calcium, magnesium and inorganic nitrogen. This implies that divalent cation-bound biopolymer might be the primary organic fraction that is degraded under aerobic digestion. Combined (anaerobic/aerobic) digestion was performed and produced further volatile solids destruction with discrete cation and biopolymer response during each phase of digestion. These results support the theory that two types of organic matter with different cation bindings are present in floc and each type is degraded under different digestion processes. / Master of Science
|
4 |
Optimisation of methane production from anaerobically digested cow slurry using mixing regime and hydraulic retention timeHughes, Kevin Lewis William January 2015 (has links)
AD is regarded as a sustainable technology that could assist the UK Government meet internationally agreed GHG emission targets by 2050. However, the mature status of the technology is based on expensive systems that rely on high energy feedstock to be profitable. Meanwhile, the natural biodegradation of cow slurry is a recognised contributor to climate change despite having a relatively low CH4 potential because of the large volumes produced. Economic mixing is essential to the cost-effectiveness of farm AD but techniques applied are not always appropriate as slurry is a shear thinning thixotropic Herschel-Bulkley fluid and therefore challenging to mix. The apparent viscosity of slurry and the shear stress induced was most influenced by solids content (exponential change) followed by temperature (linear). Most shear thinning occurred before a rising shear rate of 20s-1 was achieved with the fluid acting near-Newtonian above. Thixotropic recovery occurred within 1 hour of resting. Rheological values were also much higher than previously reported. Highest CH4 production occurred in the first 10 days of the batch process using a range of mixing regimes with different shear rates and rest periods. During fed-batch operations, changing shear rate had a minimal effect on CH4 production using a 30-day HRT whereas shorter rest periods increased production. Specific CH4 production rate was highest when feeding and mixing coincided. However, when HRT was reduced (OLR increased) the CH4 produced by all mixed regimes significantly increased with highest values being achieved using high intensity mixing rested for short periods. Lower HRTs also requires smaller digesters. Parasitic mixing energy invariably had the most influence on net energy production. Signs of instability were evident after 20 days using the low HRT. Significant microbial adaptation was also observed as the experiments progressed. The research outcomes demonstrate that mixing regime and HRT can be managed to maximise net energy production whilst reducing capital expenditure.
|
Page generated in 0.0651 seconds