Spelling suggestions: "subject:"volatile organic compounds (VOCs)"" "subject:"bolatile organic compounds (VOCs)""
11 |
Study on the Treatment of Airborne Propylene Glycol Monomethyl Ether Acetate (PGMEA) by Biofilter Packed with Fern ChipsPeng, Hsiao-ting 26 June 2006 (has links)
This study armed to develop a biofilter packed only with fern chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
In the present study, a three stage down-flow biofilter (2.18 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed for the performance test. The first stage serviced as a humidifier for the incoming gas and the following two stages, both packed with fern chips of 0.30 m ¡Ñ 0.40 m ¡Ñ0.40 m, as trickling bed biofilters for the VOC removal.
The experiment was divided into four phases. Operation conditions of an empty bed retention time (EBRT) of 1.60min and influent PGMEA concentrations of 9.33-329 (average 78.4) mg/m3 were used in the Phase I experiment which lasted for 99 days. An average PGMEA removal of only 68% was obtained in this phase. For improving the PGMEA removal in the following phases, a fixed dosage of milk powder of 1.0 g/(m3 media. day) added as aqueous milk suspension was added to the media for nutrition of the biofilms on the fern chip surfaces. After an additional operation time of 20 days (the 127th day from the startup time), a stable PGMEA removal of 91% was achieved.
Following Phase II, PGMEA removals of 93 and 94% were obtained with EBRTs of 0.40 and 0.27 min, respectively, in Phases III and IV experiments. The results indicate that EBRT was not a key influencing factor to the PGMEA removal as long as the media had a high ability for the VOC degradation.
Experimental data obtained from Phases II-IV reveal that with volumetric loadings (L) of less than 250 g PGMEA/(m3.h) to the up-streaming half of the whole media, 90% of the influent PGMEA could be removed in this half media. An additional 80% of the influent PGMEA to the following half media could be removed with L < 100 g PGMEA/(m3.h) to the half media. The PGMEA elimination capacities were proportional to the volumetric loadings of less than 250 g PGMEA/(m3.h).
From the results, it could be proposed that for achieving over 93% of the PGMEA removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7.2-7.4, influent PGMEA concentration = 100-400 mg/Am3, EBRT = 0.27-0.40 min, and L to the whole media = 45-180 g PGMEA/(m3.h).
|
12 |
Investigation of odor and its improvement in Kaohsiung cityChen, Wen-wen 16 July 2006 (has links)
This study investigates characteristics of odorous materials and their odor intensities emitted from various commercial and industrial sources in the Kaohsiung City. An overview of odor complaints from the city people is presented and discussed.
Results indicate that, due to the increasing people concerns about the odor emission problems, more frequent checks done by the City EPA officers, governmental assistances to the pollution makers on the pollution control technologies, and the enforcement of more stringent environmental protection regulations, odor-complaint cases in this city are decreasing in recent years. However, people are giving more attention to odors from food-cooking emissions and the associated complaint cases are increasing. Emissions from restaurants and plants become the two major odor sources in this city.
For the plant emissions, odorous chemicals emitted from the Kaohsiung Refinery, located in northern Zouying District, were detected to be benzene, toluene, xylenes, and styrene. The Chianjhen storage and pumping station, located by the Kaohsiung Harbor, emits some 40 different chemicals. The majors among them are methanol, ammonia, ethylene, n-pentane, chlorodifluoromethane, methyl tert-butyl ether (MTBE), propylene, cyclohexane, styrene, acetone, 1,2-dichloroethane, propylene oxide and vinyl chloride. Prompt leaks from the storage tanks and during the loading and unloading operations account for the emissions. Plants located in the Chianjhen Export Processing Zone emit chemicals, mainly methyl methacrylate, toluene, propylene glycol monomethyl ether acetate (PGMEA), ammonia, ethyl acetate and ethanol, which cause only a few complaint cases. The emitted chemicals are among the ones used by the plants as feed stokes or solvents.
Restaurant located in Chianjhen and Hsiogang Districts emit large amount of food-cooking odorants, however, the percentage of odorous complaining for the emissions is relatively high in the Zouying District as compared to the other administrative districts investigated in this study. Major components of the food-cooking emissions include hydrogen sulfide, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), ammonia, and methylamine. Relative percentages among these chemicals depend on the cooking materials and styles.
Results also indicate that industries or businesses, such as petrochemical, surface coating, paint manufacturing, fuel station, storage vessels, semiconductor manufacturing, adhesive tape manufacturing and cloth dry-cleaning, are major odor and chemical emission sources which need to be continuously implemented for getting more emission reductions in the near future.
|
13 |
Performance Study on the Cleaning of Air Streams Laden with Mixed VOC Compounds Used in Semiconductor IndustriesLi, Shang-chuan 21 July 2006 (has links)
This study armed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from semiconductor manufacturing industries. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
Performance of biofiltration for removal of simulated semiconductor manufacturing emitted gases consisting of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate) was studied in a pilot-scale biofilter consisted of two columns (40-cmW x 40-cmL x 70-cmH acrylic column) arranged in series. Each column was packed with fern chips to a packing volume of around 56 L (0.40 m¡Ñ0.40 m¡Ñ0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column.
The experiment lasted for 182 days which was divided into four phases with varying influent gas flow rates and VOC concentrations. Gas samples collected around 3 times per week from the influent as well a the first and second stage effluents were analyzed for VOC concentrations. On a weekly basis, fern chips sampled from each column were also analyzed for getting pH, moisture, and the absorbed VOC content of the chips. Phase shifted if it obtained a quasi-steady state which was judged by the nearly unchanging VOC removal efficiencies.
Operation conditions of an empty bed retention time (EBRT) of 1.50 min and influent VOC concentrations of 159-284 mg/m3 were used in the Phase I experiment which lasted for 15 days. Nutrition of 1.34 g milk powder/m3.d was used in this phase and the conditions gave an average volumetric VOC loading (L) of 15.1 g/m3.h. Effluent VOC concentrations were 3-18 mg/m3 and an average VOC removal of 96% was obtained in this phase. An EBRT of 0.75 min, L of 11.44 g/m3.h, and nutrition of 1.34 g milk powder/m3.d were used in the Phase II experiment. VOCs in the gas could be removed from 90-126 to 1-19.6 mg/m3 and an average efficiency of 94% was obtained.
Following Phase II, an average VOC removal of only 48% was obtained with an EBRT of 0.75 min, nutrition of 2.0 g milk powder/m3.d, and L of 22.8 g/m3.h in Phases III experiment during the 56-97th days from the startup time. Additional nitrogen (urea) and phosphorus (potassium dihydrogen phosphate) was added to the media from the 105th day and the VOC removal increased to 80% at the 107th day. An average VOC removal of around 93% was obtained in phase III experiment. The results showed that enough nutrition is essential to the successful performance for the biofiltration process.
Phase IV experiment lasted for 59 days with an EBRT of 0.75 min, L of 34.1 g/m3.h, and nutrition of 2.0-6.0 g/m3.d. During the initial period of this phase, media pH dropped from 7.8 to 5.8 due to an excess nitrogen (ammonium chloride) addition as high as 12.35 g N/m3.d which resulted in nitrification reaction in the media. By stopping nitrogen, increasing milk powder dosing, and addition of NaHCO3 at the 140th day, pH restored to 7.5 in the following days. VOC removal increased to an average of 92% in the rest operation days.
From the results, it could be proposed that for achieving over 90% of the VOC removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, EBRT = 0.75 min, and L to the whole media = 11-34 g/m3.h.
|
14 |
Performance Study on the Treatment of Airborne VOCs Generated from A Chemical Plant by A Pilot Biofiter Packed with Fern ChipsHuang, Jing-yi 25 June 2008 (has links)
This study armed to develop a biotrickling biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from a solvent refinery located in Kaohsiung county of southern Taiwan. The fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
A pilot-scale biofilter (0.80 mL ¡Ñ 0.75 mW ¡Ñ 1.50 mH) packed with 0.24 m3 fern chips was used for the performance study. The study was conducted in the plant by drawing vented gas streams from two distillation columns and two solvent storage vessels. The gas streams contain aromatics and oxygenated hydrocarbons such as benzene, alcohols, and esters.
Results indicated that suitable nutrition rates are 10, 100, and 10 g/m3.d, respectively, of milk powder, Urea-N, and K2HPO4-P, accompanied with a water spraying rate of 125 L/m3.d. Around 85% of VOCs in the influent gas with concentrations of 600-3,200 ppm (as CH4) could be removed under an average loading of 60 g VOC (as methane)/m3.h. A test indicated that odor intensity (expressed as dilution to threshold (D/T) ratio) of the influent gas could be reduced from around 7,330 to 73.
|
15 |
Treatment of Gaseous Volatile Organic Compounds by Catalytic Incineration and a Regenerative Catalytic OxidizerHuang, Shih-Wei 29 June 2008 (has links)
Volatile organic compounds (VOCs) can detrimentally affect human health directly and indirectly. However, the main environmental concern of VOCs involves the formation of smog. In the presence of nitrogen oxides, VOCs are the precursors to the formation of ground level ozone. Isopropyl alcohol (IPA) and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs.
Catalytic incinerations and a regenerative catalytic oxidizer (RCO) were adopted to decompose VOCs herein. Various catalysts were prepared and developed in this study. The screening test of catalytic activity and the influences of the operational parameters on VOCs removal efficiencies were widely discussed through catalytic incinerations of VOCs. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an RCO to investigate their performance in VOCs oxidation and RCO operations. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it has the excellent performance in incineration efficiency and economic efficiency. The achievements of this study are summarized as follows:
(1) Treatment of isopropyl alcohol (IPA) using ceramic honeycomb(CH) catalyst
The eighteen ceramic honeycomb catalysts we prepared by various methods (co-precipitation, wet impregnation and incipient impregnation), various metal weight loadings (5 ~ 20 wt %), and various metals (Cu and CuCe) were used in the experiment. The results indicate that 20 wt%CuCe/(CH) catalyst prepared by wet impregnation had the best performance in CO2 yield because TC50 and TC95 were 245¢J and 370¢J, respectively, under the following operating conditions; a space velocity of 12000 hr-1, an inlet IPA concentration of 1600 ppm, an oxygen concentration of 21%, and a relative humidity of 25%. Given the operational parameters of IPA oxidation experiments, the CO2 yields increased with higher temperature and oxygen concentration, but decreased with inlet IPA concentration, space velocity and the relative humidity increased. Moreover, the stability test results show that the 20 wt%CuCe/(CH) catalyst had excellent stability.
(2) Treatment of toluene using molecular sieve(MS) catalyst
Molecular sieve catalysts with various metals (Cu, Co, Mn, CuMn, CuCo, MnCo) and various loadings (5~10 wt %) were produced by wet impregnation to treat toluene. The results indicate that 10 wt%CuCo/(MS) had the best performance in toluene conversion because T50 and T95 were 295¢J and 425¢J, respectively, at an influent concentration of toluene of 900 ppm, an oxygen concentration of 21%, a space velocity of 12000 hr-1, and a relative humidity of 26%. The conversions of toluene increased with the reaction temperature and the influent concentration of oxygen, but decreased as the initial concentration of toluene and the space velocity increased. Moreover, we did not find any decay between the fresh and used catalysts using SEM and EDS.
(3) Treatment of isopropyl alcohol (IPA) using Cu/(CH) and CuCo/(CH) catalysts
We used the 20 wt% CuCo/(CH) and 20 wt% Cu/(CH) catalysts in a pilot RCO to test IPA oxidation performance under various conditions. The best catalyst was selected, and the economic efficiency of RCO and the phenomenon of RCO operations were more widely discussed. The results demonstrate that 20 wt% CuCo/(CH) catalyst performed well in an RCO because it was effective in treating IPA, with a CO2 yield of up to 95%. It also had the largest tolerance of variations in inlet IPA concentration and gas velocity. The 20 wt% CuCo/(CH) catalyst in an RCO also performed well in terms of TRE, pressure drop and selectivity to CO2. The thermal recovery efficiency (TRE) decreased as gas velocity increased. The temperature difference (Td) and pressure drop increased with gas velocity and heating zone temperature. The TRE range was from 87.8 to 91.2 % and the Td ranged from 22.1~35.1¢Junder various conditions. Finally, the stability test results indicate that the 20 wt% CuCo/(CH) catalyst was very stable at various CO2 yields and temperatures.
(4) Treatment of toluene using CuCo/(CH) catalysts with various carriers
In this work, three catalysts (10 wt%CuCo/(G)¡B10 wt%CuCo/(MS) and 20 wt% Cu/(CH)) were prepared by wet impregnation, and used in an RCO to test their performance in incineration efficiency and economic efficiency under various operational conditions. Then the best catalyst was selected and the phenomenons of RCO operations were further investigated. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it is effective in treating toluene with a toluene conversion of up to 95% at the heating zone temperature (Tset) = 400¢J under various conditions. The 10 wt% CuCo/(G) catalyst had the greatest tolerance against the effects of inlet toluene concentration and gas velocity, and exhibited the best performance in terms of TRE , Td and pressure drop. The TRE range was from 90.2 to 92.9 % and Td ranged from 18.2 to 30.9¢J under various conditions at Tset = 300~400¢J. Moreover, when 10 wt% CuCo/(G) catalyst was used in an RCO, the results demonstrate that (1) high selectivity to CO2 ; (2) decrease in TRE and increase in Td as increasing the shifting time; (3) an insignificant effect of shifting time on pressure drop and (4) excellent stability of 10 wt% CuCo/(G) catalyst in a long period test.
|
16 |
The Study on Regenerative Catalytic Oxidizer of Volatile Organic Compounds in SoilLee, Rong-chang 22 July 2009 (has links)
Oil storage tanks and their pipelines are mostly constructed under the ground. If the leaches are occurred, the soil pollution and the contamination of groundwater quality will influenced seriously. The soil of oil polluted sites is usually containing the huge amounts of volatile organic compounds (VOCs) and other organics. These VOCs is uncomfortable on physical body when they spread into atmosphere not only to cause the harm of human health but also to react into photochemical smog. Besides, the VOCs are probably reacting with nitrogen oxides into the problems of high concentrations of ozone.
In this study, we used a regenerative catalytic oxidizer (RCO) to deal with VOCs in soil of the oil polluted sites. The RCO system was packed with self-made catalyst of 20 wt%CuMn/£^-Al2O3.
Experimental results revealed 90¡Ó5% of the influent VOCs (C0=450-10,000 ppm) was thermally destruction with no catalyst in beds operated with a valve shifting time (ts) of 2 min, superficial gas velocities (Ug) of 0.37 m/s (evaluated at an influent air temperature of around 30¢J) and present maximum destruction temperature (TS) of 800-900¢J. With the catalyst packings and operation conditions of Ug=0.37 m/s and C0=450~10,000 ppm, the destruction efficiency of 93.35 and 96.5% were observed, respectively in average at TS of 600 and 650¢J. When Ug=1.11 m/s and C0=450-10,000 ppm, the destruction efficiency of 87.51 and 93.75% were observed, respectively in average at TS of 600 and 650¢J. The destruction efficiency of RCO is high at higher influent concentration of VOCs and low gas velocities at TS=600-650¢J.
|
17 |
Comprehensive Analysis of Volatile Biomarkers for Female FertilityJanuary 2018 (has links)
abstract: One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels across time. In recent years, olfactory sensing has emerged as a promising diagnostic tool for its potential for real-time, non-invasive monitoring. This technology has been proven promising in the areas of oncology, diabetes, and neurological disorders. Little work, however, has addressed the use of olfactory sensing with respect to female fertility. In this work, we perform a study on ten healthy female subjects to determine the volatile signature in biological samples across 28 days, correlating to fertility hormones. Volatile organic compounds (VOCs) present in the air above the biological sample, or headspace, were collected by solid phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fiber. Samples were analyzed, using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile signatures in biological samples across the 28 days, relevant to hormonal changes. Further work includes evaluating metabolic changes in volatile hormone expression as an early indicator of declining fertility, so women may one day be able to monitor their reproductive health in real-time as they age. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2018
|
18 |
Identification of the Active Odors From Illicit Substances for the Development of Optimal Canine Training AidsHuertas-Rivera, Adhly M 04 November 2016 (has links)
The exploitation of illicit substances, such as drugs and explosives, is on the rise. Special attention must therefore be considered to reduce the transportation and storage of these illicit substances by improving the capability of detection, even when hidden from view. Although analytical methods of detection for both drugs and explosives have improved over time, biological detectors, such as canines, are still commonly used. In comparison to humans, these canines have a larger number of olfactory receptors and a greater olfactory epithelium surface area, providing them with a more enhanced olfaction than that of humans.
The premise for the detection of illicit drugs and explosives is based on the premise that these substances though hidden, will emit volatile organic compounds (VOCs). These VOCs are not often the parent drug or explosive, they are essentially a chemical associated with the source and provide a reliable indication of the illicit substance. Previous successful research has been conducted on the identification of the active odors present in the headspace of cocaine, methamphetamine, and MDMA but instead for marijuana and heroin there have been minimum success. Thus, in the present research a method using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) was optimized to identify the VOCs makeup of heroin and marijuana to further identify the active odor compound(s) responsible for the alert response of biological detectors (canines). A mixture of acetic acid and acetylsalicylic acid was identified as target odor mimic for heroin by certified detector canines, while a mixture of limonene and caryophyllene was recognized as odor mimic for marijuana by conducting ORTs. The training aids developed successfully mimic the scent of the actual illicit substance and can be used to improve the capabilities of both drug and explosive detection canines.
Additionally, as growing threat of improvised explosives has created a worldwide concern and emphasized the requirement of a greater spectra of canine training aids that covers the complete range of explosives available, a new approach for the creation of training aids for IEDs have been evaluated. The use of a dynamic collection system have proved to be an option to develop fast and reliable canine training aids for IEDs.
|
19 |
Urinary Volatile Organic Compounds for Detection of Breast Cancer and Monitoring Chemical and Mechanical Cancer Treatments in MiceMEGHANA SHARAD TELI (6640691) 12 October 2021 (has links)
<p>The aim
of this study is to identify metabolic transformations in breast cancer through
urinary volatile organic compounds in mammary pad or bone tumor mice models.
Subsequently, it focuses on investigating the efficacy of therapeutic intervention
through identified potential biomarkers. Methods for monitoring tumor development
and treatment responses have technologically advanced over the years leading to
significant increase in percent survival rates. Although these modalities are
reliable, it would be beneficial to observe disease progression from a new perspective
to gain greater understanding of cancer pathogenesis. Analysis of cellular energetics
affected by cancer using bio-fluids can non-invasively help in prognosis and
selection of treatment regimens. The hypothesis is altered profiles of urinary volatile
metabolites is directly related to disrupted metabolic pathways. Additionally,
effectiveness of treatments can be indicated through changes in concentration
of metabolites. In this ancillary experiment, mouse urine specimens were
analyzed using gas chromatography-mass spectrometry, an analytical chemistry
tool in identifying volatile organic compounds. Female BALB/c mice were
injected with 4T1.2 murine breast tumor cells in the mammary fat pad.
Consecutively, 4T1.2 cells were injected in the right iliac artery of BALB/c
mice and E0771 tumor cells injected in the tibia of C57BL/6 mice to model bone
tumor. The effect of two different modes of treatment: chemical drug and
mechanical stimulation was investigated through changes in compound profiles.
Chemical drug therapy was conducted with dopamine agents, Triuoperazine,
Fluphenazine and a statin, Pitavastatin. Mechanical stimulation included tibia
and knee loading at the site of tumor cell injection were given to mice. A biological
treatment mode included administration of A5 osteocyte cell line. A set of
potential volatile organic compounds biomarkers differentiating mammary pad or
bone confined tumors from healthy controls was identified using forward feature
selection. Effect of treatments was demonstrated through hierarchical heat maps
and multivariate data analysis. Compounds identified in series of experiments
belonged to the class of terpenoids, precursors of cholesterol molecules. Terpene
synthesis is a descending step of mevalonate pathway suggesting its potential
role in cancer pathogenesis. This thesis demonstrates the ability of urine
volatilomics to indicate signaling pathways inflicted in tumors. It proposes a
concept of using urine to detect tumor developments at two distinct locations
as well as to monitor treatment efficacy.</p><br>
|
20 |
Identification of volatile organic compounds from Eucalyptus detected by Gonipterus scutellatus (Gyllenhal) femalesBouwer, Marc Clement 11 November 2010 (has links)
This thesis concerns the development of semiochemical identification expertise and methodology at the University of Pretoria. The Eucalyptus snout beetle Gonipterus scutellatus was used as a model insect in developing these methods, firstly because it is a known pest in the Eucalyptus forestry industry of South Africa. Secondly, nothing is known about its chemical ecology and lastly, it is a relatively large insect that is easily worked on. Three main techniques were used namely: Electroantennography (EAG), Gas Chromatography Electroantennography Detection (GC-EAD) and Gas Chromatog- raphy Mass Spectrometry (GC-MS). EAG was used to difierentiate and identify certain Eucalyptus species that were expected to contain compounds that may function as either kairomones or allomones for G. scutellatus. The EAG process revealed that G. scutellatus responds more intensely to damaged Eucalyptus leaves as compared to undamaged leaves. The crushed foliage of the known hosts Eucalyptus globulus and E. viminalis gave larger responses than the crushed foliage from a known non-host E. citriodora. We sampled the volatiles from the crushed foliage of these three species and tentatively identified sixteen compounds from the E. globulus volatile profile that was antennally active for G. scutellatus females. The presence of these volatiles were subsequently investigated for E. viminalis and E. citriodora. The green leaf volatiles, (Z)-3 hexenyl acetate, (Z)-3-hexen-1-ol and (E)-2-hexenal and aromatic compounds, 2-phenylethanol, benzyl acetate and ethylphenylacetate often gave larger responses than the terpenes such as α-pinene, β-pinene and camphene. Crushed E. globulus leaves contained 2-phenyl ethanol, benzyl acetate, ethylphenylacetate, eucalyptol, α-pinene, (Z)-3 hexenyl acetate, (Z)-3-hexen-1-ol and (E)-2-hexenal that were antennally active. The E. viminalis profile had very little 2-phenylethanol and virtually no benzyl acetate. The E. citriodora volatile profile contained very little (Z)-3-hexen-1-ol, (E)-2-hexenal, 2-phenylethanol, benzyl acetate and ethylphenylacetate. These compounds may influence the host selection behaviour of G. scutellatusfemales. These volatiles can be tested in a behavioural bioassay in order to determine their effect on the Eucalyptus snout beetle G. scutellatus. / Dissertation (MSc)--University of Pretoria, 2010. / Chemistry / unrestricted
|
Page generated in 0.111 seconds