Spelling suggestions: "subject:"boltage crop"" "subject:"boltage drop""
21 |
Justerbar modell av transmissionsledning för elkraftsöverföring / An adjustable model of a transmission line for power transmissionGatu, Andreas, Svensson, Alexander January 2014 (has links)
Detta examensarbete har utförts på uppdrag av Terco. Tercos PST 2220Transmission Line and Distribution Module fungerar som en fysisk modellav ett verkligt transmissions- eller distributionsnät där fem olika typer av nätmed avseende på längd, spänningsnivå och skenbar effekt är möjliga. Idagfinns ett behov av en modell där användaren kan ställa in dessa parametrarså att modellen mer precist kan spegla vilka egenskaper det specifika nätethar. Här undersöks hur längden och dess inverkan på en ledning kan varierasi en modell.En presentation av hur transmissions- och distributionsnät fungerar ochbeskrivs teoretiskt lägger grunden till den modell och de två approximationersom kan beskriva ett helt näts egenskaper.Då R, L och C komponenterna behöver kunna varieras för att fysisktkunna realisera denna teoretiska modell undersöks vilka metoder som dettakan genomföras på. För detta undersöks två tillvägagångssätt, kaskadkopp-lad pi-modell och variabel aktiv-passiv reaktans.Flera aspekter som utrymme, kostnad och variabilitet gör att varia-bel aktiv-passiv reaktans är att föredra. Dess funktion som en varierbarspänningskälla, uppbyggd av switchar styrda med reglerteknik och puls-breddsmodulering gör att komponenterna R, L och C och dess egenskaperoch inverkan på en transmissionslinje kan åstadkommas. Resultatet är attde nödvändiga R,L,C komponenterna går att variera i storlek för att kunnaingå i en varierbar transmissionsledningsmodell.Resultatet och målen säkerställs med simuleringar där variabel aktiv-passiv reaktans visas kunna vidareutvecklas och praktiskt testas för att mo-dellera transmissions- och distributionsnät med olika längd. Nyckelord. Variabilitet, Inverterare, Impedans, DC-AC, Pulsbreddsmodu-lering, Övertoner, Transmissionsledning, Spänningsfall, Reaktiv effekt. / This diploma work has been carried out on behalf of Terco. TercosPST 2220 Transmission Line and Distribution Module works as a physicalmodel of a real transmission and distribution grid where five different typesof networks based on length, voltage and apparent effect are available. Thereis today a need of a model where the user self can adjust these parameters sothat the model more precisely can reflect the characteristics that the specificgrid has. Here it’s investigated how the length and its impact on a line canbe varied in a model.A presentation of how the transmission and distribution grid works andare described theoretically provides the basics for the different models thatcan describe a whole network and its properties.Since the R, L and C components needs to be able to be varied to be ableto physically realize this theoretical model, the different methods that thiscan be realized through are investigated. Two approaches are investigated,the cascaded pi-model and variable active-passive reactance (VAPAR).A number of aspects like space, cost and variability makes the variableactive-passive reactance the most suited solution. Its function as a variablevoltage source, made out of an four switches, operated with control techno-logy and pulse width modulation, makes it possible to imitate R, L and Csproperties and effect on a transmission line. The result is that the necessaryR,L,C components are made adjustable in order to be incorporated in aadjustable transmission lin model.The result and the goal are verified with simulations where variableactive-passive reactance is proved able for further development and practicaltests to model transmission and distribution lines with different length. Keywords. Variability, Inverter, Impedance, DC-AC, Pulse width modula-tion, Harmonics, H-bridge, Transmission line, Voltage drop, Reactive effect.
|
22 |
Estimation of Voltage Drop in Power Circuits using Machine Learning Algorithms : Investigating potential applications of machine learning methods in power circuits design / Uppskattning av spänningsfall i kraftkretsar med hjälp av maskininlärningsalgoritmer : Undersöka potentiella tillämpningar av maskininlärningsmetoder i kraftkretsdesignKoutlis, Dimitrios January 2023 (has links)
Accurate estimation of voltage drop (IR drop), in Application-Specific Integrated Circuits (ASICs) is a critical challenge, which impacts their performance and power consumption. As technology advances and die sizes shrink, predicting IR drop fast and accurate becomes increasingly challenging. This thesis focuses on exploring the application of Machine Learning (ML) algorithms, including Extreme Gradient Boosting (XGBoost), Convolutional Neural Network (CNN) and Graph Neural Network (GNN), to address this problem. Traditional methods of estimating IR drop using commercial tools are time consuming, especially for complex designs with millions of transistors. To overcome that, ML algorithms are investigated for their ability to provide fast and accurate IR drop estimation. This thesis utilizes electrical, timing and physical features of the ASIC design as input to train the ML models. The scalability of the selected features allows for their effective application across various ASIC designs with very few adjustments. Experimental results demonstrate the advantages of ML models over commercial tools, offering significant improvements in prediction speed. Notably, GNNs, such as Graph Convolutional Network (GCN) models showed promising performance with low prediction errors in voltage drop estimation. The incorporation of graph-structures models opens new fields of research for accurate IR drop prediction. The conclusions drawn emphasize the effectiveness of ML algorithms in accurately estimating IR drop, thereby optimizing ASIC design efficiency. The application of ML models enables faster predictions and noticeably reducing calculation time. This contributes to enhancing energy efficiency and minimizing environmental impact through optimised power circuits. Future work can focus on exploring the scalability of the models by training on a smaller portion of the circuit and extrapolating predictions to the entire design seems promising for more efficient and accurate IR drop estimation in complex ASIC designs. These advantages present new opportunities in the field and extend the capabilities of ML algorithms in the task of IR drop prediction. / Noggrann uppskattning av spänningsfallet (IR-fall), i ASIC är en kritisk utmaning som påverkar deras prestanda och strömförbrukning. När tekniken går framåt och formstorlekarna krymper, blir det allt svårare att förutsäga IR-fall snabbt och exakt. Denna avhandling fokuserar på att utforska tillämpningen av ML-algoritmer, inklusive XGBoost, CNN och GNN, för att lösa detta problem. Traditionella metoder för att uppskatta IR-fall med kommersiella verktyg är tidskrävande, särskilt för komplexa konstruktioner med miljontals transistorer. För att övervinna det undersöks ML-algoritmer för deras förmåga att ge snabb och exakt IR-falluppskattning. Denna avhandling använder elektriska, timing och fysiska egenskaper hos ASIC-designen som input för att träna ML-modellerna. Skalbarheten hos de valda funktionerna möjliggör deras effektiva tillämpning över olika ASIC-designer med mycket få justeringar. Experimentella resultat visar fördelarna med ML-modeller jämfört med kommersiella verktyg, och erbjuder betydande förbättringar i förutsägelsehastighet. Noterbart är att GNNs, såsom GCN-modeller, visade lovande prestanda med låga prediktionsfel vid uppskattning av spänningsfall. Införandet av grafstrukturmodeller öppnar nya forskningsfält för exakt IRfallförutsägelse. De slutsatser som dras betonar effektiviteten hos MLalgoritmer för att noggrant uppskatta IR-fall, och därigenom optimera ASICdesigneffektiviteten. Tillämpningen av ML-modeller möjliggör snabbare förutsägelser och märkbart minskad beräkningstid. Detta bidrar till att förbättra energieffektiviteten och minimera miljöpåverkan genom optimerade kraftkretsar. Framtida arbete kan fokusera på att utforska skalbarheten hos modellerna genom att träna på en mindre del av kretsen och att extrapolera förutsägelser till hela designen verkar lovande för mer effektiv och exakt IR-falluppskattning i komplexa ASIC-designer. Dessa fördelar ger nya möjligheter inom området och utökar kapaciteten hos ML-algoritmer i uppgiften att förutsäga IR-fall.
|
Page generated in 0.0349 seconds