• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Compact solid-state lasers in the near-infrard and visible spectral range

Seger, Kai January 2013 (has links)
The subject of this thesis is the exploration of new concepts for compact solid-state lasers in the visible and near-infrared spectral range using new components such as volume Bragg gratings for wavelength stabilisation and wavelength tuning. Also single-walled carbon nanotubes for mode-locking and Q-switching of lasers have been studied.We have developed a new method for the tuning of solid-state lasers by replacing a dielectric mirror with a transversally chirped volume Bragg grating, which allows smooth wavelength tuning without additional elements inside the laser cavity. The result is a more compact laser, since the tuning mechanism and output coupler are incorporated in one component. Another benefit is an increased efficiency, since additional elements inside the cavity will always add to the total loss of the laser. This has been demonstrated for a broadband ytterbium laser around 1 µm and a single-longitudinal-mode Nd:YVO4 laser around 1.06 µm. A volume Bragg grating has also been used to construct an efficient, narrow-linewidth ytterbium fiber laser and the employment of a volume Bragg gratingas the pump mirror of a solid-state laser for frequency-doubling has been investigated. Both lasers represent a practical solution, eliminating the use of additional intracavity elements. Second-harmonic generation is an efficient way to access the visible spectral range using diode-pumped solid-state lasers. However, these lasers can suffer from large amplitude fluctuations, which has been analyzed in more detail for an optically-pumped semiconductor disk-laser and a volume Bragg grating locked ytterbiumlaser. The control of those amplitude fluctuations is very important, since many applications like fluorescence microscopy require a laser with a constant output power and as little noise as possible. In addition to this, we have demonstrated, that saturable absorbers based on quan-tum dots and carbon nanotubes can be used to mode-lock compact laser at a wavelength around 1.03 µm. Those lasers have many interesting applications incommunications, clock generation, metrology and life sciences. / <p>QC 20130507</p>
12

On diode-pumped solid-state lasers

Hellström, Jonas January 2007 (has links)
The research that is presented in this thesis can be divided into two major parts. The first part concerns longitudinally pumped, bulk Er-Yb lasers. In these lasers, the main limitation is the thermal shortcomings of the phosphate glass host material. From the laser experiments and the spectroscopic measurements on crystalline host materials, as well as an investigation to bring further light to the physical background of the involved dynamics, the thesis presents some novel results that contribute to the search for a crystalline replacement. The second part concerns novel laser concepts applied to Yb-doped double tungstate lasers. Different crystal orientations are investigated, such as an athermal orientation for reduced thermal lensing and a conical refraction orientation for complete polarization tuning. Furthermore, the introduction of volume Bragg gratings in the cavity enables wide spectral tuning ranges and extremely low quantum defects. Regarding the first part, the main results are the achievement of 15 % slope efficiency in a monolithic, continuous-wave Yb:GdCOB laser and the achievement of Q-switching of the same laser. The Q-switched pulse durations were around 5-6 ns and the Q-switched slope efficiency was 11.6 %. For both lasers, a maximum output power of 90 mW was obtained, which is close to ordinary glass lasers under similar conditions. A spectroscopic investigation into the Er,Yb-codoped double tungstates was also performed and the results have enabled mathematical modeling of the fluorescence dynamics in these materials. Finally, the temperature dependence of the dynamics in Er,Yb:YAG was studied and the results have given some insight into the physical background of the mechanisms involved. Regarding the second part, different end-pumped Yb:KReW laser cavities were constructed to demonstrate the different concepts. With a laser crystal cut for propagation along the athermal direction at 17º angle clockwise from the dielectric direction Nm, the thermal lens could be reduced by 50 %. In these experiments the maximum output power was 4 W at 60 % slope efficiency. In another cavity incorporating a volume Bragg grating in a retroreflector set-up, the wavelength could be continuously tuned between 997 - 1050 nm. The spectral bandwidth was 10 GHz and the peak output power was 3 W. The same output power could also be obtained at 1063 nm with the grating positioned as an output coupler instead. If, on the other hand, the grating was positioned as an input coupler, 3.6 W output power at 998 nm was obtained at a quantum defect of only 1.6 %. Furthermore, using a crystal oriented for propagation along an optic axis, internal conical refraction could be used to establish arbitrary control of the polarization direction as well as the extinction ratio. Even unpolarized light could be enforced despite the highly anisotropic medium. With this configuration, the maximum output power was 8.6 W at 60 % slope efficiency which equals the performance of a reference crystal with standard orientation. The completely novel concepts of laser tuning with Bragg grating retroreflectors, of low quantum defect through Bragg grating input couplers and of polarization tuning by internal conical refraction can all easily be applied to several other laser materials as well. / QC 20100713

Page generated in 0.11 seconds