• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volume of Fluid Simulations for Droplet Impact on Dry and Wetted Hydrophobic and Superhydrophobic Surfaces

Burtnett, Emily Nicole 11 August 2012 (has links)
An aircraft may experience inlight ice accretion and corresponding reductions in performance and control when the vehicle encounters clouds of super-cooled water droplets. The EADS-IW Surface Engineering Group is investigating passive anti-icing possibilities, such as functional and ice phobic coatings. Ice-resistant coatings require investigating droplet impact on dry surfaces and wet films, including microscopic effects such as droplet splashing. To investigate droplet impacts, a volume of fluid (VOF) flow solver was used for droplets impacting dry and wetted hydrophobic and superhydrophobic surfaces, focusing on meso-scale simulations. The effects of structured, micro-scale surface roughness and the effects of a thin wet film on the surface, corresponding to a saturated surface under high humidity conditions, were investigated. Axisymmetric domains produced acceptable results for smooth, dry surfaces. It was determined that in order to properly predict behavior of droplets impacting surfaces with structured micro-scale roughness, three-dimensional simulations are recommended.
2

Wave Model and Watercraft Model for Simulation of Sea State

Krus, Kristofer January 2014 (has links)
The problem of real-time simulation of ocean surface waves, ship movement and the coupling in between is tackled, and a number of different methods are covered and discussed. Among these methods, the finite volume method has been implemented in an attempt to solve the problem, along with the compressible Euler equations, an octree based staggered grid which allows for easy adaptive mesh refinement, the volume of fluid method and a variant of the Hyper-C advection scheme for compressible flows for advection of the phase fraction field. The process of implementing the methods that were chosen proved to be tricky in many ways, as they involve a large number of advanced topics, and the implementation that was implemented in this thesis work suffered from numerous issues. There were for example problems with keeping the interface intact, as well as a harsh restriction on the time step size due to the CFL condition. Improvements required to make the method sustainable for real-time applications are discussed, and a few suggestions on alternative approaches that are already in use for similar purposes are also given and discussed. Furthermore, a method for compensating for gain/loss of mass when solving the incompressible flow equations with an inaccurately solved pressure Poisson equation is presented and discussed. A momentum conservative method for transporting the velocity field on staggered grids without introducing unnecessary smearing is also presented and implemented. A simple, physically based illumination model for sea surfaces is derived, discussed and compared to the Blinn–Phong shading model, although it is never implemented. Finally, a two-dimensional partial differential equation in the spatial domain for simulating water surface waves for mildly varying bottom topography is derived and discussed, although it is deemed to be too slow for real-time purposes and is therefore never implemented. / <p>This publication differs from the printed version of the report in the sense that links are blue in this version and black in the printed version.</p>
3

Semi-empirical approach to characterize thin water film behaviour in relation to droplet splashing in modelling aircraft icing

Alzaili, Jafar S. L. January 2012 (has links)
Modelling the ice accretion in glaze regime for the supercooled large droplets is one of the most challenging problems in the aircraft icing field. The difficulties are related to the presence of the liquid water film on the surface in the glaze regime and also the phenomena associated with SLD conditions, specifically the splashing and re-impingement. The steady improvement of simulation methods and the increasing demand for highly optimised aircraft performance, make it worthwhile to try to get beyond the current level of modelling accuracy. A semi-empirical method has been presented to characterize the thin water film in the icing problem based on both analytical and experimental approaches. The experiments have been performed at the Cranfield icing facilities. Imaging techniques have been used to observe and measure the features of the thin water film in the different conditions. A series of numerical simulations based on an inviscid VOF model have been performed to characterize the splashing process for different water film to droplet size ratios and impact angles. Based on these numerical simulations and the proposed methods to estimate the thin water film thickness, a framework has been presented to model the effects of the splashing in the icing simulation. These effects are the lost mass from the water film due to the splashing and the re-impingement of the ejected droplets. Finally, a new framework to study the solidification process of the thin water film has been explored. This framework is based on the lattice Boltzmann method and the preliminary results showed the capabilities of the method to model the dynamics, thermodynamics and the solidification of the thin water film.
4

Semi-empirical approach to characterize thin water film behaviour in relation to droplet splashing in modelling aircraft icing

Alzaili, Jafar S. L. 07 1900 (has links)
Modelling the ice accretion in glaze regime for the supercooled large droplets is one of the most challenging problems in the aircraft icing field. The difficulties are related to the presence of the liquid water film on the surface in the glaze regime and also the phenomena associated with SLD conditions, specifically the splashing and re-impingement. The steady improvement of simulation methods and the increasing demand for highly optimised aircraft performance, make it worthwhile to try to get beyond the current level of modelling accuracy. A semi-empirical method has been presented to characterize the thin water film in the icing problem based on both analytical and experimental approaches. The experiments have been performed at the Cranfield icing facilities. Imaging techniques have been used to observe and measure the features of the thin water film in the different conditions. A series of numerical simulations based on an inviscid VOF model have been performed to characterize the splashing process for different water film to droplet size ratios and impact angles. Based on these numerical simulations and the proposed methods to estimate the thin water film thickness, a framework has been presented to model the effects of the splashing in the icing simulation. These effects are the lost mass from the water film due to the splashing and the re-impingement of the ejected droplets. Finally, a new framework to study the solidification process of the thin water film has been explored. This framework is based on the lattice Boltzmann method and the preliminary results showed the capabilities of the method to model the dynamics, thermodynamics and the solidification of the thin water film.
5

Study of interface capturing methods for two-phase flows / Etude des méthodes de suivi d'interface pour les écoulements diphasiques

Djati, Nabil 22 June 2017 (has links)
Cette thèse est consacrée au développement et à la comparaison des méthodes de suivi d'interface pour les écoulements diphasiques incompressibles. Elle s'intéresse à la sélection de méthodes robustes de suivi d'interface, puis à leur couplage avec le solveur des équations de Navier-Stokes. La méthode level-set est en premier lieu étudiée, en particulier l'influence du schéma d'advection et de l'étape de réinitialisation sur la qualité des résultats du suivi d'interface. Il a été montré que la méthode de réinitialisation avec contrainte de volume est robuste et précise en combinaison avec des schémas conservatifs WENO d'ordre 5 pour l'advection. Il a été constaté que les erreurs du suivi d'interface augmentent de manière abrupte lorsque la condition CFL est trop petite. Comme remède, la réinitialisation du champ level-set effectuée moins souvent réduit la diffusion numérique et le déplacement non-physique de l'interface. La conservation de la masse n'est pas assurée avec les méthodes level-set. Les méthodes VOF (volume-of-fluid) qui conservent naturellement la masse du fluide de référence sont alors étudiées. Une résolution géométrique avec un schéma consistent et conservatif est alors adoptée, ainsi qu'une autre technique alternative plus aisément extensible en 3D. Il a été trouvé que ces deux dernières méthodes donnent des résultats très proches. La méthode MOF (moment-of-fluid), qui reconstruit l'interface en utilisant le centre de masse du fluide de référence, est plus précise que les méthodes VOF. Différentes méthodes couplées entre level-set et VOF sont alors étudiées, notamment: CLSVOF, MCLS, VOSET et CLSMOF. Il a été observé que la méthode level-set tend à épaissir les filaments minces, tandis que VOF et les méthodes couplées les fragmentent en petites particules. Finalement, on a couplé les méthodes level-set et VOF avec le solveur incompressible des équations de Navier-Stokes. On a comparé différentes manières de prise en compte des conditions de saut à l'interface (lisse et raide). Il a été montré que les méthodes VOF sont plus robustes, et donnent d'excellents résultats pour quasiment toutes les simulations. Deux méthodes level-set donnant de très bons résultats, comparables à ceux de VOF, sont aussi identifiées. / This thesis is devoted to the development and comparison of interface methods for incompressible two-phase flows. It focuses on the selection of robust interface capturing methods, then on the manner of their coupling with the Navier-stokes solver. The level-set method is first investigated, in particular the influence of the advection scheme and the reinitialization step on the accuracy of the interface capturing. It is shown that the volume constraint method for reinitialization is robust and accurate in combination with the conservative fifth-order WENO schemes for the advection. It is found that interface errors increase drastically when the CFL number is very small. As a remedy, reinitializing the level-set field less often reduces the amount of numerical diffusion and non-physical interface displacement. Mass conservation is, however, not guaranteed with the level-set methods. The volume-of-fluid (VOF) method is then investigated, which naturally conserves the mass of the reference fluid. A geometrical consistent and conservative scheme is adopted, then an alternative technique more easily extended to 3D. It is found that both methods give very similar results. The moment-of-fluid (MOF) method, which reconstructs the interface using the reference fluid centroid, is found to be more accurate than the VOF methods. Different coupled level-set and VOF methods are then investigated, namely: CLSVOF, MCLS, VOSET and CLSMOF. It is observed that the level-set method tends to thicken thin filaments, whereas the VOF and coupled methods break up thin structures in small fluid particles. Finally, we coupled the level-set and volume-of-fluid methods with the incompressible Navier-Stokes solver. We compared different manners (sharp and smoothed) of treating the interface jump conditions. It is shown that the VOF methods are more robust, and provide excellent results for almost all the performed simulations. Two level-set methods are also identified that give very good results, comparable to those obtained with the VOF methods.

Page generated in 0.0647 seconds