• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of numerical code for the study of marangoni convection

Melnikov, Denis 14 May 2004 (has links)
A numerical code for solving the time-dependent incompressible 3D Navier-Stokes equations with finite volumes on overlapping staggered grids in cylindrical and rectangular geometry is developed. In the code, written in FORTRAN, the momentum equation for the velocity is solved by projection method and Poisson equation for the pressure is solved by ADI implicit method in two directions combined with discrete fast Fourier transform in the third direction. A special technique for overcoming the singularity on the cylinder's axis is developed. This code, taking into account dependence upon temperature of the viscosity, density and surface tension of the liquid, is used to study the fluid motion in a cylinder with free cylindrical surface (under normal and zero-gravity conditions); and in a rectangular closed cell with a source of thermocapillary convection (bubble inside attached to one of the cell's faces). They are significant problems in crystal growth and in general experiments in fluid dynamics respectively. Nevertheless, the main study is dedicated to the liquid bridge problem.<p><p>The development of thermocapillary convection inside a cylindrical liquid bridge is investigated by using a direct numerical simulation of the 3D, time-dependent problem for a wide range of Prandtl numbers, Pr = 0.01 - 108. For Pr > 0.08 (e.g. silicon oils), above the critical value of temperature difference between the supporting disks, two counter propagating hydrothermal waves bifurcate from the 2D steady state. The existence of standing and traveling waves is discussed. The dependence of viscosity upon temperature is taken into account. For Pr = 4, 0-g conditions, and for Pr = 18.8, 1-g case with unit aspect ratio an investigation of the onset of chaos was numerically carried out. <p><p>For a Pr = 108 liquid bridge under terrestrial conditions ,the appearance and the development of thermoconvective oscillatory flows were investigated for different ambient conditions around the free surface.<p><p>Transition from 2D thermoconvective steady flow to a 3D flow is considered for low-Prandtl fluids (Pr = 0.01) in a liquid bridge with a non-cylindrical free surface. For Pr < 0.08 (e.g. liquid metals), in supercritical region of parameters 3D but non-oscillatory convective flow is observed. The computer program developed for this simulation transforms the original non-rectangular physical domain into a rectangular computational domain.<p><p>A study of how presence of a bubble in experimental rectangular cell influences the convective flow when carrying out microgravity experiments. As a model, a real experiment called TRAMP is numerically simulated. The obtained results were very different from what was expected. First, because of residual gravity taking place on board any spacecraft; second, due to presence of a bubble having appeared on the experimental cell's wall. Real data obtained from experimental observations were taken for the calculations.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
2

Modélisation de l'encrassement en régime turbulent dans un échangeur de chaleur à plaques avec un revêtement fibreux sur les parois / Numerical modeling of fouling induced by turbulent flow in a plate heat exchanger with fibrous coating on the walls

Sadouk, Hamza Chérif 15 June 2009 (has links)
Les transferts de chaleur par convection forcée turbulente dans une conduite plane partiellement remplie par un milieu poreux sont étudiés numériquement. L’étude concerne l’analyse de l’encrassement dans un canal plan représentatif d’un échangeur de chaleur à plaques. Un fluide, ayant un fort pouvoir encrassant, est considéré en régime turbulent. L’objectif de cette étude est de proposer une technique qui repose sur l’utilisation de matériaux fibreux comme capteur de particules pouvant réduire les méfaits de l’encrassement. Cela consiste à essayer de réduire la résistance d’encrassement en agissant sur les propriétés thermiques du dépôt. L’étude de la cinétique de l’encrassement permet de déterminer la loi de variation de l’épaisseur du dépôt au cours du temps. Cette équation est couplée aux équations de conservation. Un modèle de conductivité thermique effective (fluide, dépôt, fibres poreuses) a été choisi et le phénomène de colmatage de la matrice poreuse est considéré. L’apport du milieu poreux sur les performances de l’échangeur est analysé / A numerical study is carried out to investigate the forced convection heat transfer induced by a turbulent flow in a parallel plate channel partly filled with a porous or fibrous material. The study involves the analysis of fouling in a plate heat exchanger, represented by a parallel plate channel with a high fouling potential liquid flow in turbulent regime. The objective is to come out with a technical solution that relies on the use of fibrous materials capability to capture deposited particles, and therefore to reduce the fouling impacts within heat exchangers. This solution focuses on reducing the fouling resistance on wall surfaces by modifying the thermal properties of the deposit. The deposit thickness evolution is obtained through a kinetics model of fouling, which is coupled to the conservation equations. An effective thermal conduction model (liquid, deposit, porous material) is selected in order to account for fouling within the porous matrix. The benefits of porous material on heat exchanger performance are analyzed

Page generated in 0.069 seconds